PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Studies of haemocompatibility of AISI 316LVM steel point to the need for nickel elimination from the surface and replacing it with other elements showing higher biotolerance. Such layers include titanium, carbon or silicon coatings. Therefore, the authors attempted to evaluate some selected physicochemical properties of TiO2 layers, grown by atomic layer deposition (ALD) method, on the surface of 316LVM steel at variable process temperature. ALD temperature has a major role in the final quality of the surface layer grown with the use of such method, regardless of the type of the base. It was observed that the growth of temperature had an adverse influence on corrosive resistance in the artificial plasma environment and contributed to formation of a double (porous) layer showing decreased tightness. Further on, assessment of the coating adhesion to the base showed that too low process temperature T = 100 °C had an adverse effect on mechanical properties, resulting in substantially reduced critical force. On the other hand, the performed surface wettability tests showed no influence of ALD temperature in the obtained angle values.
Rocznik
Strony
32--42
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
autor
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Faculty of Mining and Geology, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science. An Introduction to Materials in Medicine, Elsevier Academic Press, Amsterdam, Oxford, New York, Tokyo, 2004, pp. 137–152.
  • [2] M. Fedel, Blood compatibility of diamond-like carbon (DLC) coatings, Diamond-Based Materials for Biomedical Applications (2013) 71–102.
  • [3] T. Hanava, In vivo metallic biomaterials and surface modification, Materials Science Engineering 267 (1999) 2360– 2366.
  • [4] M. Basiaga, R. Jendruś, W. Walke, Z. Paszenda, M. Kaczmarek, M. Popczyk, Influence of surface modification on properties of stainless steel used for implants, Archives of Metallurgy and Materials 60 (4) (2015) 2965–2969.
  • [5] D. Siva, R. Krishna, Y. Sun, Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement, Applied Surface Science 252 (2005) 1107–1121.
  • [6] G.X. Shen, Y.C. Chen, L. Lin, C.J. Lin, D. Scantlebury, Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals, Electrochimica Acta 50 (2005) 5083–5089.
  • [7] A. Karambakhsh, A. Afshar, P. Malekinejad, Corrosion resistance and color properties of anodized Ti-6Al-4V, Journal of Materials Engineering and Performance 21 (2012) 121–127.
  • [8] B. Díaza, J. Swiatowska, V. Mauricea, A. Seyeux, B. Normand, E. Härkönen, M. Ritala, P. Marcus, Electrochemical and time-of-flight secondary ion mass spectrometry analysis of ultra-thin metal oxide (Al2O3 and Ta2O5) coatings deposited by atomic layer deposition on stainless steel, Electrochimica Acta 56 (2011) 10516–10523.
  • [9] B.S. Lim, A. Rahtu, R.G. Gordon, Atomic layer deposition of transition metals, Nature Materials 2 (2003) 749–754.
  • [10] L. Aarik, T. Arroval, R. Rammula, H. Mändar, V. Sammelselg, J. Aarik, Atomic layer deposition of TiO2 from TiCl4 and O3, Thin Solid Films 542 (2013) 100–107.
  • [11] M. Basiaga, M. Staszuk, W. Walke, Z. Opilski, Mechanical properties of ALD TiO2 layers on stainless steel substrate, Materialwissenschaft & Werkstofftechnik 47 (5) (2016) 1–9.
  • [12] H. Kumagai, Y. Masuda, T. Shinagawa, Self-limiting nature in atomic-layer epitaxy of rutile thin films from TiCl4 and H2O on sapphire (001) substrates, Journal of Crystal Growth 314 (2011) 146–150.
  • [13] M.R. Saleem, P. Silfsten, S. Honkanen, J. Turunen, Thermal properties of TiO2 films grown by atomic layer deposition, Thin Solid Films 520 (2012) 5442–5446.
  • [14] Standard: ASTM F2129 – Electrochemical Corrosion Testing of Surgical Implants (Standard Test Method for Conducting Cyclic Potentiodynamic Polarization).
  • [15] ISO 10993-15 Biological Evaluation of Medical Devices – Part 15: Identification and Quantification of Degradation Products from Metals and Alloys.
  • [16] PN-EN 1071-3:2007. Advanced Technical Ceramics. Methods of Test for Ceramic Coatings. Part 3. Determination of Adhesion and Other Mechanical Failure Modes in an Attempt to Scratch.
  • [17] PN-EN ISO 14577-1 Metallic Materials-Instrumented Indentation Test for Hardness Materials Parameters – Part 1: Test Method.
  • [18] A. Kajzer, W. Kajzer, J. Dzielicki, D. Matejczyk, The study of physicochemical properties of stabilizing plates removed from the body after treatment of pectus excavatum, Acta of Bioengineering and Biomechanics 2 (2015) 35–44.
  • [19] A. Kajzer, W. Kajzer, K. Gołombek, M. Knol, J. Dzielicki, W. Walke, Corrosion resistance, EIS and wettability of the implants made of 316LVM steel used in chest deformation treatment, Archives of Metallurgy and Materials 61 (2) (2016) 3283–3298.
  • [20] E. Marin, L. Guzman, A. Lanzutti, W. Ensinger, L. Fedrizzi, Multilayer Al2O3/TiO2 atomic layer deposition coatings for the corrosion protection of stainless steel, Thin Solid Films 522 (2012) 283–288.
  • [21] M. Leskeläa, M. Kemella, K. Kuklia, V. Porea, E. Santalaa, M. Ritalaa, J. Lub, Exploitation of atomic layer deposition for nanostructured materials, Materials Science and Engineering C 27 (5-8) (2007) 1504–1508.
  • [22] C.X. Shan, X. Hou, K.-L. Choy, Corrosion resistance or TiO2 films grown on stainless steel by atomic layer deposition, Surface & Coatings Technology 202 (2008) 2399–2402.
  • [23] J. Aarik, A. Aidla, H. Maèndar, V. Sammelselg, Anomalous effect of temperature on atomic layer deposition of titanium dioxide, Journal of Crystal Growth 220 (2000) 531–537.
  • [24] M. Catauroa, F. Bollinoa, F. Papalea, R. Giovanardib, P. Veronesib, Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants, Materials Science and Engineering C 43 (2014) 375–382.
  • [25] L.C. Xu, Effect of surface wettability and contact time on protein adhesion to biomaterial surfaces, Biomaterials 28 (2007) 3273–3283.
  • [26] M. Kawashitaa, Y. Tanakab, S. Uenob, G. Liua, Z. Lic, T. Miyazakid, In vitro apatite formation and drug loading/ release of porous TiO2 microspheres prepared by sol–gel processing with different SiO2 nanoparticle contents, Materials Science and Engineering C 50 (2015) 317–323.
  • [27] A. Sobczyk-Guzenda, B. Pietrzyk, W. Jakubowski, H. Szymanowski, W. Szymanski, J. Kowalski, K. Olesko, M. Gazicki-Lipman, Mechanical, photocatalytic and microbiological properties of titanium dioxide thin films synthesized with the sol–gel and low temperature plasma deposition techniques, Materials Research Bulletin 48 (2013) 4022–4031.
  • [28] D. Sidane, D. Chicot, S. Yala, S. Ziani, H. Khireddine, A. Iost, X. Decoopman, Study of the mechanical behavior and corrosion resistance of hydroxyapatite sol–gel thin coatings on 316 L stainless steel pre-coated with titania film, Thin Solid Films 593 (2015) 71–80.
  • [29] W. Walke, Z. Paszenda, M. Basiaga, P. Karasiński, M. Kaczmarek, EIS study of SiO2 oxide film on 316L stainless steel for cardiac implants, Information Technologies in Biomedicine. Advances in Intelligent Systems and Computing, vol. 284, Springer, 2014, pp. 403–410.
  • [30] M. Basiaga, Z. Paszenda, W. Walke, P. Karasiński, J. Marciniak, Electrochemical impedance spectroscopy and corrosion resistance of SiO2 coated cpTi and Ti-6Al-7Nb alloy, Information Technologies in Biomedicine. Advances in Intelligent Systems and Computing, vol. 284, Springer, 2014, pp. 411–420.
  • [31] M. Talha, C. Behera, O.P. Sinha, A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications, Materials Science and Engineering C 33 (7) (2013) 3563–3575.
  • [32] A. Zieliński, S. Sobieszczyk, T. Seramak, W. Serbiński, B. Świeczko-Żurek, A. Ossowska, Biocompatibility and bioactivity of load-bearing metallic implants, Advances in Materials Science 10 (4) (2010) 21–31.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a43ab46a-7b3d-434a-9044-88e8232e64e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.