PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Local structure of generalized Orlicz−Lorentz function spaces

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the local structure of a separated point x in the generalized Orlicz-Lorentz space Λφ which is a symmetrization of the respective Musielak-Orlicz space Lφ. We present criteria for an LM point and a UM point, and sufficient conditions for a point of order continuity and an LLUM point, in the space Λφ. We prove also a characterization of strict monotonicity of the space Λφ .
Rocznik
Strony
211--227
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Institute of Mathematics, Faculty of Electrical Engineereing, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland
Bibliografia
  • [1] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics Series, vol. 129- Academic Press Inc. 1988.
  • [2] G. Birkhoff, Lattice Theory, Providence, RI 1967.
  • [3] M. Ciesielski, P. Kolwicz, and A. Panfil, Local monotonicity structure of symmetric spaces with application. J. Math. Anal. Appl. 409 (2014), 649-662, DOI 10.1016/j.jmaa.2013.07.028.
  • [4] M. Ciesielski, P. Kolwicz, and R. Płuciennik, Local approach to Kadec-Kleeproperties in symmetric functier. spaces, J. Math. Anal. Appl. 426 (2015), 700-726, DOI 10.1016/j.jmaa.2015.01.064.
  • [5] P. Foralewski, Some fundamental geometric and topological properties of generalized Orlicz-Lorentz function spaces, Math. Nachr. 284 (2011), no. 8-9, 1003-1023, DOI 10.1002/mana,200810083.
  • [6] P. Foralewski, On some geometric properties of generalized Orlicz-Lorentz function spaces, Nonlinear Anal. 75 (2012), no. 17, 6217-6236, DOI 10.1016/j.na.2012.06.020.
  • [7] P. Foralewski, H. Hudzik, and L. Szymaszkiewicz, On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces, Math. Nachr. 281 (2008), no. 2,181-198, DOI 10.1002/mana.2005105Ł4.
  • [8] H. Hudzik, A. Kamińska, and M. Mastyło, Monotonicity and rotundity properties in Banach lattices, Rocky Mountain J. Math. 30 (2000), no. 3, 933-949, DOI 10.1216/rmjm/1021477253.
  • [9] H. Hudzik, P. Kolwicz, and A. Narloch, Local rotundity structure of Calderón-Lozanovskii spaces, Indae. Math. N.S. 17 (2006), no. 3, 373-395, DOI 10.1016/S0019-3577(06)80039-X.
  • [10] H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and dominated best aproximant in Banach lattices, J. Approx. Theory 95 (1998), no. 3, 353-368, DOI 10.1006/jath,1997.3226.
  • [11] H. Hudzik, X. B. Liu, and T. F. Wang, Points of monotonicity in Musielak-Orlicz function spaces endowed with the Luxemburg norm, Arch. Math. 82 (2004), no. 6, 534-545, DOI 10.1007/s00013-003-0440-x.
  • [12] H. Hudzik and A. Narloch, Local monotonicity structure of Cardelón-Lozanowskiï spaces, Indag. Matk. N.S. 15 (2004), no. 1, 1-12, DOI 10.1016/S0019-3577(04)90017-1.
  • [13] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow 1984; in Russian.
  • [14] A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38, DOI 10.1002/mana.19901470104.
  • [15] A. Kamińska, Extreme points in Orlicz-Lorentz spaces, Arch. Math. 55 (1990), no. 2, 173-1SŁ DOI 10.1007/BF01189139.
  • [16] A. Kamińska and M. Mastyło, Abstract duality Sawyer formula and its applications, Monatsh. Math. 151 (2007), 223-245, DOI 10.1007/s00605-007-0445-9.
  • [17] A. Kamińska and Y. Raynaud, Isomorphic copies in the lattice E and its symmetrization E^(*)with applications to Orlicz-Lorentz spaces, J. Funct. Anal. 257 (2009), 271-331, DOI 10.1016/j.jfa.2009.02.016.
  • [18] P. Kolwicz, Local structure of symmetrizations with applications, J. Math. Anal. Appl. 440 (2016). 810-822, DOI 10.1016/j.jmaa.2016.03.075.
  • [19] P. Kolwicz, K. Leśnik, and L. Maligranda, Pointwise products of some Banach function spaces and factorization, J. Funct. Anal. 266 (2014), no. 2, 616-659, DOI 10.1016/j.jfa.2013.10.028.
  • [20] P. Kolwicz and A. Panfil, Local Δ condition in generalized Calderón-Lozanovskiï spaces, Taiwanese J. Math. 16 (2012), no. 1, 259-282.
  • [21] P. Kolwicz and A. Panfil, Points of nonsquareness of Lorentz spaces Γ_p,w, Journal of Inequalities and Applications, posted on 2014, 467, DOI 10.1016/j.jmaa.2013.07.028.
  • [22] P. Kolwicz and R. Płuciennik, Local Δ (x) condition as a crucial tool for local structure of Galderx- -Lozanovskii spaces, J. Math. Anal, and Appl. 356 (2009), 605-614, DOI 10.1016/j.jmaa.2009.03.030.
  • [23] P. Kolwicz and R. Płuciennik, Points of upper local uniform monotonicity in Calderón-Lozanowskii spaza. J. Convex Anal. 17 (2010), no. 1,111-130.
  • [24] S. G. Krein. Yu. L Petnnin, and E. M. Semenov, Interpolation of linear operators, Nauka, Moscow 1978; in Russian.
  • [25] W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation, J. Approx. Theory 69 (1992), no. 2,173-187, DOI 10.1016/0021-9045(92)90141-a.
  • [26] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II. Function spaces, Springer-Verlag, Berlin-New York 1979, DOI 10.1007/978-3-662-35347-9.
  • [27] T. Shimogaki, On the complete continuity of operators in an interpolation theorem, J. Fac. Sci. Hokkaido Univ. Ser. 120 (1968), no. 3,109-114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4337f0e-8fd8-4c72-a1b8-e65c20f649db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.