PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1) powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2) resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ). It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2) cathode were higher than that of the cell with theNd2NiO4+δ cathode.
Twórcy
autor
  • Department of Materials Science and Engineering, Inha University, Incheon, Korea
autor
  • Department of Materials Science and Engineering, Inha University, Incheon, Korea
autor
  • Department of Materials Science and Engineering, Inha University, Incheon, Korea
Bibliografia
  • [1] J. Huijsmans, F. Van Berkel, G. Christie, Journal of Power Sources. 71, 107 (1998).
  • [2] N. Q. Minh, Solid State Ionics. 174, 271 (2004).
  • [3] F. Mauvy, C. Lalanne, J. Bassat, J. Grenier, H. Zhao, P. Dordor et al, J. Eur. Ceram. Soc. 25, 2669 (2005).
  • [4] V. Kharton, A. Viskup, A. Kovalevsky, E. Naumovich, F. Marques, Solid State Ionics. 143, 337 (2001).
  • [5] T. Ishihara, K. Nakashima, S. Okada, M. Enoki, H. Matsumoto, Solid State Ionics. 179, 1367 (2008).
  • [6] J. B. Smith, T. Norby, J. Electrochem. Soc. 177, 639 (2006).
  • [7] J. Guo, H. Lou, Y. Zhu, X. Zheng, Mater. Lett. 57, 4450 (2003).
  • [8] T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki, Materials Chemistry and Physics. 122, 250 (2010).
  • [9] A. Aguadero, J. Alonso, M. Escudero, L. Daza, Solid State Ionics. 179, 393 (2008).
  • [10] V. Vashook, S. Tolochko, I. Yushkevich, L. Makhnach, I. Kononyuk, H. Altenburg et al, Solid State Ionics. 110, 245 (1998).
  • [11] V. V. Kharton, A. V. Kovalevsky, M. Avdeev, E. V. Tsipis, M. V. Patrakeev, A. A. Yaremchenko et al, Materials Chem. Mater. 19, 2027 (2007).
  • [12] E. Boehm, J. Bassat, P. Dordor, F. Mauvy, J. Grenier, P. Stevens, Solid State Ionics. 176, 2717 (2005).
  • [13] A. Khandale, S. Bhoga, Solid State Ionics. 262, 416 (2014).
  • [14] K. Ishikawa, K. Metoki, H. Miyamoto, Journal of Solid State Chemistry. 182, 2096 (2009).
  • [15] S. Nishiyama, D. Sakaguchi, T. Hattori, Solid State Commun. 94, 279 (1995).
  • [16] N. Poirot, P. Odier, P. Simon, F. Gervais, Solid State Sci. 5, 735 (2003).
  • [17] J. Bassat, P. Odier, J. Loup, J. Solid State Chem. 110, 124 (1994).
  • [18] T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki, Phys. Chem. Chem. Phys. 11, 3055 (2009).
  • [19] M. Greenblatt, Solid State & Materials Science. 2, 174 (1997).
  • [20] A. Khandale, S. Bhoga, Journal of Power Sources. 195, 7974 (2010).
  • [21] A. M. George, I. K. Gopalakrishnan, M. D. Karkhanavala, Mat. Res. Bull. 9, 721 (1974).
  • [22] A. P. Khandale, S. S. Bhoga, R. V. Kumar, Solid State Ionics. 238, 1(2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a431c59e-a7df-4b53-97b5-cd1153b900bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.