PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Budowa, właściwości i zastosowania elektrod nano- i mikrostrukturalnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Structure, properties and applications of nano- and microstructure electrodes
Języki publikacji
PL EN
Abstrakty
PL
Artykuł stanowi przegląd zagadnień dotyczących elektrod nano- i mikrostrukturalnych. Przedstawiono problem definiowania nano–i mikroelektrod. Opisano związek rozmiaru elektrody z rodzajem dyfuzji stosowanym do opisu prądu procesu elektrodowego. Omówiono wybrane grupy materiałów wykorzystywane do tworzenia mikroelektrod, oraz przedstawiono wybrane techniki, w których są one stosowane. Omawiano także główne zastosowania nano- i mikroelektrod.
EN
This paper is a review of issues on nano- and microstructure electrodes. The problem of defining micro- and nanoelectrodes has been presented. Moreover, the connection between the size of electrode and the diffusion type used to describe the electrode processes has also been demonstrated. The selected group of materials used to construct microelectrodes has been described and selected techniques in which they are applied have been presented. This paper also discusses the main applications of micro- and nanoelectrodes.
Czasopismo
Rocznik
Strony
11--18
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Katedra Chemii Nieorganicznej i Analitycznej, Zakład Elektroanalizy i Elektrochemii, Uniwersytet Łódzki, Łódź
autor
  • Katedra Chemii Nieorganicznej i Analitycznej, Zakład Elektroanalizy i Elektrochemii, Uniwersytet Łódzki, Łódź
Bibliografia
  • 1. Kalinin V., Gruverman A.: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. Springer Science & Business Media 2007.
  • 2. Ajayan P.M., Schadler L.S., Braun P.V.: Nanocomposite science and technology. Wiley 2003.
  • 3. PAC: Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. 1972, 31, 577–585.
  • 4. PAC: Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Part II: Heterogeneous Catalysis. 1976, 46, 71–79.
  • 5. Bard A.J., Faulkner L.R.: Electrochemical methods 2nd edn. Wiley 2001.
  • 6. Vairavapandian D., Vichchulada P., Lay M.D.: Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing. Analytica Chimica Acta 2008, 626, 2, 119.
  • 7. Gooding J.J.: Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochimica Acta 2005, 50, 15, 3049.
  • 8. Trojanowicz M.: Analytical applications of carbon nanotubes: a review. Trends in Analytical Chemistry 2006, 25, 5, 480.
  • 9. Kleijn S.E.F., Lai S.C.S., Koper M.T.M., Unwin P.R.: Electrochemistry of Nanoparticles. Angewandte Chemie International Edition 2014, 53, 14, 3558.
  • 10. Murray R.W.: Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chemical Reviews 2008, 108, 7, 2688.
  • 11. You H ., Yang S., Dinga B., Yang H .: Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society Reviews 2013, 42, 7, 2880.
  • 12. Chen J., Zheng A., Gao Y., H e Ch., Wu G., Chen Y., Kai X., Zhu Ch.: Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochimica Acta Part A 2008, 69, 3, 1044.
  • 13. Kugler Sz., Spychaj T.: Nanostruktury węglowe i błony lub powłoki polimerowe z ich udziałem. Polimery 2013, 58, 2, 93.
  • 14. Praca zbiorowa: Poradnik galwanotechnika, WNT 2002.
  • 15. Krzyczmonik P., Socha E., Skrzypek Sł., Soliwoda K., Celichowski G., Grobelny J.: Honeycomb-structured porous poly(3,4-ethylenedioxythiophene) composite layers on a gold electrode. Thin Solid Films 2014, 565, 54.
  • 16. Honda K., Rao T.N., Tryk D.A., Fujishima A., Watanabe M., Yasui K., Masuda H .: Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. Journal of The Electrochemical Society 2000, 147, 2, 659.
  • 17. Li J., Zhang H ., Zhang Y., Wang M., Zhang F., Nie H .: A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium–oxygen batteries. Nanoscale 2013, 5, 11, 4647.
  • 18. Rapta P., Neudeck A., Bartl A., Dunsch L.: Microstructured conductive polypyrrole Electrodes. Electrochimica Acta 1999, 44, 20, 3483.
  • 19. Bartlett P.N., Birkin P.R., Ghanem M.A.: Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chemical Communications 2000, 17, 1671.
  • 20. Vericat C., Vela M.E., Benitez G., Carrob P., Salvarezza R.C.: Self-assembled monolayers of thiols and dithiols on gold: new challenges for a wellknown system. Chemical Society Reviews 2010, 39, 5, 1805.
  • 21. Blacha A., Koscielniak P., Sitarz M., Szuber J., Zak J.: Pedot brushes electrochemically synthesized on thienyl-modified glassy carbon Surfaces. Electrochimica Acta 2012, 62, 441.
  • 22. Prakash S., Chakrabarty T., Singh A.K., Shahi V.K.: Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosensors and Bioelectronics 2013, 41, 43.
  • 23. Cao X., Ye Y., Liu S.: Gold nanoparticle-based signal amplification for biosensing. Analytical Biochemistry 2011, 417, 1, 1.
  • 24. Zhao Q., Gan Z., Zhuang Q.: Electrochemical Sensors Based on Carbon Nanotubes. Electroanalysis 2002, 14, 23, 1609.
  • 25. Li J., Koehne J.E., Cassell A.M., Chen H ., Ng H .T., Ye Q., Fan W., Han J., Meyyappan M.: Inlaid Multi-Walled Carbon Nanotube Nanoelectrode Arrays for Electroanalysis. Electroanalysis 2005, 17, 1, 15.
  • 26. Hu Ch., Hu S.: Carbon Nanotube-Based Electrochemical Sensors: Principles and Applications in Biomedical Systems. Journal of Sensors 2009, 2009, Article ID 187615, doi:10.1155/2009/187615.
  • 27. Liu X.-M., Huang Z.D., Oh S.W., Zhang B., Ma P.-C., Yuen M.M.F., Kim J.-K.: Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Composites Science and Technology 2012, 72, 2, 121.
  • 28. Liu D., Cao G.: Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy & Environmental Science 2010, 3, 9, 1218.
  • 29. Song M.-K., Park S., Alamgir F.M., Cho J., Liu M.: Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering: R: Reports 2011, 72, 11, 203.
  • 30. Yao H ., Zheng G., Li W., McDowell M.T., Seh Z., Liu N., Lu Z., Cui Y.: Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes. Nano Letters 2013, 13, 7, 3385.
  • 31. Kalfagiannis N., Karagiannidis P.G., Pitsalidis C., H astas N., Panagiotopoulos N.T., Patsalas P., Logothetidis S.: Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films 2014, 560, 27.
  • 32. Stapleton A.J, Afre R.A, Ellis A.V., Shapter J.G., Andersson G.G., Quinton J.S., Lewis D.A.: Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Science and Technology of Advanced Materials 2013, 14, 3, 1.
  • 33. Kim S., Kim S.Y., Kim J., Kim J.H.: Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness. Journal of Materials Chemistry C 2014, 2, 28, 5636.
  • 34. Muresan L.M.: Zeolite-modified electrodes with analytical applications. Pure and Applied Chemistry 2011, 83, 2, 325.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a42cdc36-88de-48ba-a48c-0e2bb5566ebf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.