Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of the novel calcium phosphate/sulfate based bone cements

Treść / Zawartość
Warianty tytułu
Języki publikacji
Calcium phosphate cements (CPCs) are a family of self-setting, bone repair materials. CPCs possess excellent biocompatibility, surgical handiness and adequate mechanical properties but reveal slow resorption in vivo. Currently, very interesting group of CPCs are biomaterials composed of a-tricalcium phosphate (a-TCP, a-Ca3(PO4)2) and calcium sulfate. Calcium sulfate hemihydrate (CSH, CaSO40.5 H2O) posses a long clinical history in different fields of medicine and is widely recognized as a safe, fast setting and resorbable implant material. The main goal of this study was to investigate how different factors influence the phase composition and physico-chemical properties of the new, cement-type material on the basis of a-TCP, CSH and anhydrous dicalcium phosphate (DCP, CaHPO4). In presented work two different powder phase compositions and three liquid phases were used to produce new bone substitutes. XRD results showed that obtained materials, after setting and hardening, consisted of α-TCP, DCP, DCPD (CaHPO42H2O), HA and bassanite phases. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles and differed in the range of 4-14 min (I) and 10-30 min (F). Increase in the amount of CSH in the powder component resulted in shortening of setting time. Microstructure of cements was evaluated on the fractured samples by scanning electron microscopy (SEM) and the porosity via mercury porosimetry. Open porosity of the final materials was similar for all investigated compositions. Compressive strength depended on the composition and increased steadily over a period of maturation. The results obtained suggest that calcium phosphate/sulfate bone cement has the potential to be applied for bone augmentation.
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • [1 ] Kokubo T.: Bioceramics and their clinical applications, Woodhead Publishing Limited, Cambridge England 14 (2008) 302-325.
  • [2] Bohner M.: Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements, Injury, Int. J. Care. Injured 31 (2000) S-D37-47.
  • [3] LeGeros R.Z., Chohayeb A., Shulman A.: Apatitic calcium phosphates: possible dental restorative material, J. Den. Res. 61 (1982) 343-347.
  • [4] Brown W.E., Chow LC.: A new calcium phosphate setting cement, J. Dent. Res. 62 (1983) 672-679.
  • [5] Camire C.L., Gbureck U., Hirsiger W., Bohner M.: Correlating crystallinity and reactivity in an a-tricalcium phosphate, Biomaterials 26 (2005) 2787-2794.
  • [6] Fernandez E., Gil F.J., Best S.M., Ginebra M.P., Driessens F.C.M., Planell J.A.: Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4-a-Ca3(PO4)2 system: Compressive strength and microstructural development, J. Biomed. Mater. Res.15;41(4) (1998) 560-7.
  • [7] Nilsson M., Fernandez E., Sarda S., Lidgren L., Planell J.A.: Characterization of a novel calcium phosphate/sulphate bone cement, J. Biomed. Mater. Res. 61 (2002) 600-607.
  • [8] Bohner M.: New hydraulic cements based on a-tricalcium phosphate-calcium sulfate dihydrate mixtures, Biomaterials 25 (2004) 741-749.
  • [9] Monma H., Makishima A., Mitomo M., Ikegami T.: Hydraulic Properties of the Tricalcium Phosphate-Dicalcium Phosphate Mixture, J. Ceram. Soc. Jpn. 96 (1988) 878-880.
  • [10] Bermudez O., Boltong M.G., Driessens F.L.M., Planell J. A.: Development of an Octacalcium Phosphate Cement, J. Mater. Sci.: Mater. Med. 5 (1994)144-146.
  • [11] Legeros R.Z.: Biodegradation and bioresorption of calcium phosphate ceramics. Clin. Mater. 14, 1993, 65-88.
  • [12] Combes C., Bareille R., Rey C.: Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction. J. Biomed. Mater. Res. 79A (2006) 318-328.
  • [13] Daculsi G., Laboux O., Malard O., Weiss P.: Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci.: Mater. Med. 14 (2003) 195-200.
  • [14] Lazary A., Balla B., Kosa J. P., Bacsi K., Nagy Z., Takacs I., Varga P.P., Speer G., Lakatos P.: Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells, Biomaterials 28 (2007) 393-399.
  • [15] Peng Wang, Eun-Jung Lee, Chee-Sung Park, Byung-Ho Yoon, Du-Sik Shin, Hyoun-Ee Kim, Calcium Sulfate Hemihydrate Powders with a Controlled Morphology, J. Am. Ceram. Soc., 91 (2008) 2039-2042.
  • [16] Fernandez E., Vlad MD., Gel M.M., Lopez J., Torres R., Cauich JV., Bohner M.: Modulation of porosity in apatitic cements by the use of a-tricalcium phosphate-calcium sulphate dihydrate mixtures, Biomaterials 26 (2005) 3395-3404.
  • [17] Gangfeng Hu, Luwei Xiao, Hong Fu, Dawei Bi, Haitao Ma, Peijian Tong, Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair, J. Mater. Sci: Mater. Med. 21 (2010) 627-634.
  • [18] Brown W.E., Smith J.P., Lehr J.R., Frazier A.W.: Octacalcium Phosphate and Hydroxyapatite: Crystallographic and Chemical Relations between Octacalcium Phosphate and Hydroxyapatite, Nature 196 (1962) 1050-1054.
  • [19] LeGeros R.Z., Daculsi G., Orly I., Abergas T., Torres W.: Solution-mediated Transformation of Octacalcium Phosphate (OCP) to Apatite, Scanning Microsc. 3 (1989) 129-138.
  • [20] Suzuki O., Kamakura S., Katagiri T., Nakamura M., Zhao B., Honda Y., Kamijo R.: Bone Formation Enhanced by Implanted Octacalcium Phosphate Involving Conversion into Ca-deficient Hydroxyapatite, Biomaterials 27 (2006) 2671-2681.
  • [21] Liu Y., Cooper P. R., Barralet J. E., Shelton R. M.: Influence of Calcium Phosphate Crystal Assemblies on the Proliferation and Osteogenic Gene Expression of Rat Bone Marrow Stromal Cells, Biomaterials 28 (2007) 1393-1403.
  • [22] ASTM C266-04. ASTM Annual Book of standards, Standard Test Method for Time Setting of Hydraulic-Cement paste by Gillmore Needles, West Conshohocken, PA 19428-2959, USA.
  • [23] Fernandez E., Gil F.J., Best S., Ginebra M.P., Driessens F.C.M., Planell J.A.: The cement setting reaction in the CaHPO4-a-Ca3(PO4)2 system: An X-ray diffraction study, J. Biomed. Mater. Res. 5;42[3], (1998) 403-6.
  • [24] Durucan C., Brown P. W.: Reactivity of a-Tricalcium Phosphate, J. Mater. Sci. 37 (2002) 963-969.
  • [25] Czechowska J., Paszkiewicz Z., Zima A., Pijocha D., Ślósarczyk A.: Influence of heat treatment of titanium-doped hydroxyapatite (TiHA) on properties and in vitro behaviour of calcium sulfate -TiHA composites, Ceram. Mater. 63 [4] (2011) 758-764.
  • [26] Abell A.B., Willis K.L., Lange D.A.: Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials, J. Coll. Int. Sci. 211 (1999) 39-44.
This work has been supported by the project No UDA-POIG.01.03.01-00-005/09
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.