Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bending active structures offer an efficient and sustainable way to form freeform shells by elastically deforming initially flat or linear elements. However, widespread adoption remains limited by the difficulty of reconciling structural demands, architectural requirements, and material constraints early in the design process. This paper proposes an integrated concept-design method that uses strategically placed cut-out patterns on a flat panel to combine linear ribs and thin plate elements in a single piece. A comparative study using Finite Element Analysis examines the performance of the proposed design when fabricated in plywood versus 3D-printed natural fiber-reinforced polymers. The analysis indicates that plywood, with its well-established fabrication methods and environmental profile, offers a practical solution under current conditions, whereas 3D-printed natural fiber-reinforced polymers present promising avenues for customization and material efficiency - albeit with a need for further validation of their processing parameters. By mapping the interplay between geometry, material selection, and manufacturing methods, the study underscores how early-stage design decisions can influence structural behaviour and overall environmental footprint, paving the way for future prototyping in sustainable architecture.
Czasopismo
Rocznik
Tom
Strony
97--111
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Graduate MSc student at Tabriz Islamic art university Department of Architecture, Iran
autor
- Department of Civil and Architectural Engineering, Aarhus University, Denmark
Bibliografia
- [1] Beatini, V. (2017a). Kinetic rosette patterns and tessellations. International Journal of Computational Methods and Experimental Measurements, 5(4), 631-641.
- [2] Beatini, V. (2017b). Symmetry-based transformable and foldable plate structures. Journal of Mechanical Design, 139(7), 072301.
- [3] Beatini, V., & Royer-Carfagni, G. (2017). Soap film analogy for anisotropically stretched membranes and cable nets. Structural and Multidisciplinary Optimization, 55(3), 885-898. https://doi.org/10.1007/s00158-016-1533-z
- [4] Buckminster, F. R. (1959). Self-strutted geodesic ply-dome (United States Patent No. US2905113A). https://patents.google.com/patent/US2905113A/en
- [5] Chauhan, V., Kärki, T., & Varis, J. (2022). Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 35(8), 1169-1209. https://doi.org/10.1177/0892705719889095
- [6] Chilton, J., & Tang, G. (2016). Timber gridshells: Architecture, structure and craft. Routledge. https://www.taylorfrancis.com/books/mono/10.4324/9781315773872/timber-gridshells-john-chilton-gabriel-tang
- [7] de Grey, S. (2000). The design of the roofs of the British Museum Great Court and the Music Centre at Gateshead. Widespan Roof Structures, 276-282.
- [8] Douthe, C., Caron, J.-F., & Baverel, O. (2010). Gridshell structures in glass fibre reinforced polymers. Construction and Building Materials, 24(9), 1580-1589.
- [9] Douthe, C., Mesnil, R., Orts, H., & Baverel, O. (2017). Isoradial meshes: Covering elastic gridshells with planar facets. Automation in Construction, 83, 222-236. https://doi.org/10.1016/j.autcon.2017.08.015
- [10] Engel, H. (1968). Structure systems. New York, Praeger
- [11] Fathollahi A., Beatini V. (2024). Design and analysis of bending-active configurations through an initial flat-cut pattern based on the curvature lines. International Journal of Space Structures.
- [12] Gengnagel, C., Hernández, E. L., & Bäumer, R. (2013). Natural-fibre-reinforced plastics in actively bent structures. Proceedings of the Institution of Civil Engineers - Construction Materials, 166(6), 365-377. https://doi.org/10.1680/coma.12.00026
- [13] Harris, R., Romer, J., Kelly, O., & Johnson, S. (2003). Design and construction of the Downland Gridshell. Building Research & Information, 31(6), 427-454. https://doi.org/10.1080/0961321032000088007
- [14] Højbjerg, K., Kirkegaard, P. H., & Beatini, V. (2020). Implementation of constructability in conceptual design. 2020(19), 1-13.
- [15] Kansara, H., Liu, M., He, Y., & Tan, W. (2023). Inverse design and additive manufacturing of shape-morphing structures based on functionally graded composites. Journal of the Mechanics and Physics of Solids, 180, 105382. https://doi.org/10.1016/j.jmps.2023.105382
- [16] Khojastehmehr, F., & Filz, G. H. (2023). Expanding the design freedom of spatial patterns by combined elastic bending and twisting: A parametric study. Proceedings of IASS Annual Symposia, 2023(26), 1-12. https://www.ingentaconnect.com/contentone/iass/piass/2023/00002023/00000026/art00005
- [17] Kotelnikova-Weiler, N., Douthe, C., Hernandez, E. L., Baverel, O., Gengnagel, C., & Caron, J.-F. (2013). Materials for Actively-Bent Structures. International Journal of Space Structures, 28(3-4), 229-240. https://doi.org/10.1260/0266-3511.28.3-4.229
- [18] Lázaro, C., Monleón, S., & Bessini, J. (2017). Tangent stiffness in point-loaded elastica arches. Proceedings of IASS Annual Symposia, 2017(16), 1-8. https://www.ingentaconnect.com/content/iass/piass/2017/00002017/00000016/art00002
- [19] Lienhard, J. (2014). Bending-active structures: Form-finding strategies using elastic deformation in static and kinetic systems and the structural potentials therein.
- [20] Liuti, A., Mazzola, C., & Zanelli, A. (2018). Where design meets construction: A review of bending active structures.
- [21] Magna, R. L., & Knippers, J. (2017). On the behaviour of bending-active plate structures. Proceedings of IASS Annual 2017(14), 1-9. https://www.ingentaconnect.com/content/iass/piass/2017/00002017/00000014/art00003
- [22] Naicu, D. I. (2012). Geometry and Performance of Timber Gridshells [Master thesis.]. University of Bath.
- [23] Nguyen, D. L., Luedtke, J., Nopens, M., & Krause, A. (2023). Production of wood-based panel from recycled wood resource: A literature review. European Journal of Wood and Wood Products, 81(3), 557-570. https://doi.org/10.1007/s00107-023-01937-4
- [24] Nielsen-Roine, K., & Meyboom, A. (2024). Seven Generationsfor Wood. 12 ACSA Annual Meeting. Disrupters on the Edge.
- [25] O’Neill, B. (2006). Elementary differential geometry. Elsevier. https://books.google.ch/books?hl=en&lr=&id=OtbNXAIve_AC&oi=fnd&pg=PP1&dq=O%E2%80%99Neill,+B.,+Elementary+Differential+Geometry&ots=aNHm7RJIEn&sig=6fT4nPxUNIrYDLzwbcXqcAhOG3c
- [26] Oun, A., Alajarmeh, O., Manalo, A., Abousnina, R., & Gerdes, A. (2024). Durability of hybrid flax fibre-reinforced epoxy composites with graphene in hygrothermal environment. Construction and Building Materials, 420, 135584. https://doi.org/10.1016/j.conbuildmat.2024.135584
- [27] Quinn, G., & Gengnagel, C. (2015). Simulation Methods for the Erection of Strained Grid Shells Via Pneumatic Falsework. https://doi.org/10.1007/978-3-319-24208-8_22
- [28] Qureshi, J. (2022). A review of recycling methods for fibre reinforced polymer composites. Sustainability, 14(24), 16855.
- [29] Radeschi, M. (2017). Closed geodesics on surfaces and Riemannian manifolds. 5. https://doi.org/10.14760/SNAP-2017-005-EN
- [30] Saslawsky, K., Steixner, C., Tucker, M., Costalonga, V., & Dahy, H. (2024). FlaxPack: Tailored Natural Fiber Reinforced (NFRP) Compliant Folding Corrugation for Reversibly Deployable Bending-Active Curved Structures. Symposia, Polymers, 16(4), 515. https://doi.org/10.3390/polym16040515
- [31] Schling, E., Wang, H., Hoyer, S., & Pottmann, H. (2022). Designing Asymptotic Geodesic Hybrid Gridshells. Computer-Aided Design, 152, 103378. https://doi.org/10.1016/j.cad.2022.103378
- [32] Schmucker, D. G. (1998). Models, Models, Models: The Use Of Physical Models To Enhance The Structural Engineering Experience. 1998 Annual Conference, 3-413.
- [33] Tellier, X., Boutillier, R., Douthe, C., & Baverel, O. (2021). Patterns for gridshells with negligible geometrical torsion at nodes. Curved and Layered Structures, 8(1), 147-156.
- [34] Tuli, N. T., Khatun, S., & Rashid, A. B. (2024). Unlocking the future of precision manufacturing: A comprehensive exploration of 3D printing with fiber-reinforced composites in aerospace, automotive, medical, and consumer industries. Heliyon, 10(5), e27328. https://doi.org/10.1016/j.heliyon.2024.e27328
- [35] Wang, T., Wang, Y., Crocetti, R., & Wålinder, M. (2022). In-plane mechanical properties of birch plywood. Construction and Building Materials, 340, 127852. https://doi.org/10.1016/j.conbuildmat.2022.127852
- [36] Wei, Y., & Hadigheh, S. A. (2022). Cost benefit and life cycle analysis of CFRP and GFRP waste treatment methods. Construction and Building Materials, 348, 128654.
- [37] Young, W. C., Budynas, R. G., & Sadegh, A. M. (2002). Roark’s formulas for stress and strain (Vol. 7). McGraw-hill New York. https://jackson.engr.tamu.edu/wp-content/uploads/sites/229/2023/03/Roarks-formulas-for-stress-and-strain.pdf
- [38] Zhang, Y., Yan, Z., Nan, K., Xiao, D., Liu, Y., Luan, H., Fu, H., Wang, X., Yang, Q., Wang, J., Ren, W., Si, H., Liu, F., Yang, L., Li, H., Wang, J., Guo, X., Luo, H., Wang, L., … Rogers, J. A. (2015). A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences, 112(38), 11757-11764. https://doi.org/10.1073/pnas.1515602112
- [39] Zhao, X., Copenhaver, K., Wang, L., Korey, M., Gardner, D. J., Li, K., Lamm, M. E., Kishore, V., Bhagia, S., & Tajvidi, M. (2022). Recycling of natural fiber composites: Challenges and opportunities. Resources, Conservation and Recycling, 177, 105962.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a41ed705-9104-4f46-9101-1b9ef22ae9c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.