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Abstract. In this paper, we investigate the existence of constant-sign solutions for a non-
linear Neumann boundary value problem involving the discrete p-Laplacian. Our approach
is based on an abstract local minimum theorem and truncation techniques.

Keywords: constant-sign solution, difference equations, Neumann problem.

Mathematics Subject Classification: 39A10, 39A12, 34B15.

1. INTRODUCTION

Nonlinear discrete problems are important mathematical models in various research
fields such as computer science, mechanical engineering, astrophysics, control sys-
tems, artificial or biological neural networks, economics, fluid mechanics, image pro-
cessing and many others. During the last few decades, many authors have inten-
sively investigated various kinds of nonlinear discrete problems by using different
tools, as for instance, fixed point theorems and sub-super solutions methods. Of
these topics see [4-6,22] and the reference therein. For general references on dif-
ference equations and their applications we also cite [1] and [21]. In particular, by
using variational methods, the existence and multiplicity of solutions for nonlinear
difference equations have been studied in many papers, usually, under a suitable
(p — 1)—sublinear or (p — 1)—superlinear growth condition at infinity on the nonlin-
earities, see [2,3,6-10,12-15,17,18,20,23,25]. For a complete overview on variational
methods on finite Banach spaces and discrete problems, see [11].

In this paper, we investigate the existence of constant-sign solutions for the fol-
lowing nonlinear discrete Neumann boundary value problem

{—A(%(Au(k — 1)) + q(k)ép(u(k)) = Mi(u(k)), k€ [1,N],
Au(0) = Au(N) =0, S
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where A is a positive parameter, N is a fixed positive integer, [1, N] is the discrete
interval {1,..., N}, ¢,(s) := [s[P7?s, 1 < p < +o0o and for all k € [1,N], ¢(k) > 0,
Au(k) ;= u(k + 1) — u(k) denotes the forward difference operator and fi : R — R is
a continuous function for all k£ € [1, N].

More precisely, we obtain a suitable interval of parameters for which problem
(N, r) admits constant-sign solutions which are local minimizers of the correspond-
ing Euler-Lagrange functional. First, we consider the case in which problem (Ny ;)
does not have the trivial solution and the existence of a nonzero solution is ensured
whenever the parameter A belongs to a well determined interval (Theorem 3.1). Such
solutions, roughly speaking, are positive when f(0) > 0 for every k € [1, N] (The-
orem 3.3, Corollary 3.4). We emphasize that to achieve our goal, we do not assume
any growth condition at infinity on the nonlinearities.

Next, if problem (Ny ) admits the trivial solution, then the existence of at least
one positive solution is established under the more restrictive condition that the non-
linearities fj are superlinear at zero (Theorem 3.7).

The existence of a negative solution is also ensured by similar arguments to those
described before (Theorem 3.5, Corollary 3.6). Combining the previous two situations,
the existence of at least two constant-sign solutions, one positive and one negative, is
also shown (Theorem 3.9).

For completeness, we observe that the results given here are new also for a non-
linear discrete problem with Dirichlet boundary conditions involving the p-Laplacian
for p # 2. While, for p = 2 and ¢(k) = 0 for every k € [1, N], similar results have
been already given in [11] and for nonlinear algebraic systems in [12]. The existence
of two constant-sign solutions for a Dirichlet problem is treated in [15], for p = 2 and
provided that the functions f; are superlinear at infinity.

Finally, we point out that multiple solutions for nonlinear discrete depending-
-parameter problems are investigated in [8,13,14, 16, 19].

2. MATHEMATICAL BACKGROUND

In the N-dimensional Banach space
X ={u:[0,N+1] = R: Au(0) = Au(N) =0},

we consider the norm

N+1 N 1/p
[lu]| := (Z |Au(k —1)P + Zq(k)u(kﬂp) for all e X.
k=1 k

=1
Moreover, we will use also the equivalent norm

lu]|oo ;== max |u(k)| forall weX.
ke[0,N+1]

For our purpose, the following inequality will be useful

ulloo < |lullg™'/P forall we X, where q:= kmin k- (2.1)
€[1,N]
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To describe the variational framework of problem (N} f), we introduce the follow-
ing two functions

N
and U(u):= ZFk(u(k)) forall uwe X, (2.2)
k=1

e

D(u) :

where Fy(t) := fot fe(&)dE for every (k,t) € [1, N] x R. A direct computation shows
that ® and ¥ are two C'—functions on X and taking into account that

N N+1
= A(gp(Au(k — ))o(k) = > ¢p(Au(k — 1))Av(k —1) forall u,v € X,
k=1 k=1

it is easy to verify, see also [25], that the following result holds.

Lemma 2.1. A vector v € X is a solution of problem (N ) if and only if u is a
critical point of the function Iy = & — \W. B

For the reader convenience, we recall here the main tool used to achieve our goal,
an abstract local minimum theorem given in [11, Theorem 3.3|, which is a new version
of [10, Theorem 1.5].

Theorem 2.2. Let (X, ||-||) be a finite dimensional Banach space and let Iy : X — R
be a function satisfying the following structure hypothesis:

(H) In(u):=®(u) — AU(u) for allu € X, where ®,¥ : X — R are two functions of
class C' on X with ® coercive, i.e. limy | —oo ®(u) = +00, such that

inf & = &(0) = ¥(0) = 0,

and X is a real positive parameter.

Then, let v > 0, for each X\ € A = (O ﬁ)’ the function I, = & — \VU

" SUPp—1((0,r])
admits at least a local minimum T € X such that ®(@) < r, Ix(w) < Ix(u) for all
u € ®71([0,7]) and I} (u) = 0.

3. MAIN RESULTS

Now, we give the main results.

Theorem 3.1. Let ¢ be a positive constant. Assume that fi(0) # 0 for some
k € [1,N]. Then, for every

q c?
A€ Ac =10,- N )
p Zk:l maXge[—c,c] Fk(s)

problem (N f) admits at least one nontrivial solution u such that ||ullec < c.
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Proof. Fix A as in A.. Our aim is to apply Theorem 2.2, by putting ® and ¥ as in
(2.2) on the space X. An easy computation ensures the ® and ¥ satisfy condition (H).
Now, we put

r=de,

p
Taking into account (2.1), for all © € X such that ®(u) < r, one has

ulloo < e (3.1)

Therefore, we have that

Sup@(u)gr \II(u) < g Z;C\le maXSE[*QC] Fk(s)
r ~q cP '

Hence, owing to Theorem 2.2, for each

q cP < T

5 chv:l maxeo,c] Fr(s) T SUPg(u)<r (u)’

A<

the functional I) admits a non-zero critical point u € X such that ®(u) < r. By (3.1)
and Lemma 2.1, we have that u is a solution of (N s) such that [lu[| < c. O

Remark 3.2. If we are interested in obtaining the biggest interval of parameters,
it is a simple matter to see that Theorem 3.1 ensures the existence of a nontrivial
solution if we replace the interval A, with the following

q <
A:=10,=sup —5 .
P >0 )y maXee[—c,o) Fi(s)

Of course, in this case we lose the estimate on the maximum of the solution.
The next result establishes the existence of a positive solution.

Theorem 3.3. Let ¢ be a positive constant. Assume that fi,(0) > 0 for every k € [1, N]
and f(0) # 0 for some k € [1,N]. Then, for every

+ 4 c?
AEAT = 10,-=x ,
p Zk:1 maXse(o,c| F(s)

problem (N ), admits at least one positive solution u such that ||uls < c.

Proof. Since we are interested in obtaining a positive solution for problem (Ny f), we
adopt the following truncation on the functions fg,

+ _ fk(s)a ifSZO,
I (S)_{fk(o), if s < 0.

Fixed A € A}. Working with the truncations f,", since we have that fi(0) # 0 for
some k € [1, N], Theorem 3.1 ensures a nontrivial solution for problem (N, ;+) such
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that ||u|l.c < ¢. Now, to prove the u is nonnegative, we exploit the fact that u is a
critical point of the energy functional Iy = ® — AW associated to problem (N, ;+). In
other words, we have that u € X satisfies the following condition: B

N+1 N
> dp(Auk —1)Av(k — 1)+ > q(k)y,(u(k))v(k)
k=1 k=1
N (3.2)
= Zf,j’(u(k))v(k) for all u,ve X.
k=1
From this, taking as test function v = —u ™, it is a simple computation to prove that
|lu=|| = 0, that is w is nonnegative. Moreover, arguing by contradiction, we show

that u is also a positive solution of problem (Ny ). Suppose that u(k) = 0 for some
k € [1, N]. Being u a solution of problem (N} r) we have

Pp(Au(k — 1)) — dp(Au(k)) = fr(0) = 0,
which implies that
0> —|u(k —1)|P2u(k — 1) — Ju(k + )P 2u(k +1) > 0.

So, we have that u(k — 1) = u(k 4+ 1) = 0. Hence, iterating this process, we get that
u(k) = 0 for every k € [1, N], which contradicts that u is nontrivial and this completes
the proof. O

Corollary 3.4. Let ¢ be a positive constant. Assume that fi(0) > 0 for every
k € [1,N]. Then, for every

< q P
DYED. . ) S —
Py Fr(c)

problem (N ¢), admits at least one positive solution u such that ||ull- < c.

Clearly, with analogous arguments, we can prove the following results on the ex-
istence of negative solutions.

Theorem 3.5. Let ¢ be a positive constant. Assume that fi,(0) < 0 for every k € [1, N]
and f(0) # 0 for some k € [1, N]. Then, for every

xeAr=(02 <
o ’ p Zk:N:I maxse[fc,O} Fk(s) ’

problem (N ), admits at least one negative solution u such that ||ull < c.

Corollary 3.6. Let ¢ be a positive constant. Assume that fi(0) < 0 for every
k € [1,N]. Then, for every

~ P
re ks (o,qNC> |
Py e Fr(—c)

problem (N ¢), admits at least one negative solution u such that ||ule < c.
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Requiring a more restrictive growth condition at zero on the nonlinearities fj, we
can obtain a positive solution also whenever problem (N, ;) admits the trivial one.
For simplicity, we work with nonnegative nonlinearities.

Theorem 3.7. Assume that fi,(t) > 0 for allt > 0 and for all k € [1, N], and

(i) limsup,_, o+ F’;,(JS) = +oo for some k € [1, N].

Then, for each \ € (O, % SUPe>0 SN F ey Cka(C)), problem (N y) admits at least one posi-
N F S
tive solution.

Proof. Fix A as in the conclusion and ¢ > 0 such that A < 2 Taking into

ZkN 1 (@)
account the proof of Theorem 3.1, problem (N ;) admits a solution u which is a

global minimum for the restriction of the function I to the set ®(u) < %Ep . On the
other hand, from (i) there is d < (g/ Zi\;l gr)c such that

Zk 1(1k Fi.(d) Zk 1 Fi(d)
PA e~ dr ’

Hence, an easy computation gives that ®(w) < Ic” and Iy(w) < 0, being w € X
defined by putting w(k) = d for every k € [1, N|. Therefore, we have I (u) < Iy(w) <
0, which implies that u # 0. To show that u is positive, we argue as in the proof of
Theorem 3.1. O

Remark 3.8. It is interesting to point out that Theorem 3.7 guarantees a positive
solution also when f;(0) = 0 for every k € [1, N]. Moreover, we highlight that Theo-
rem 3.7 continues to hold under a slightly less general condition

(1) limg_yo+ o5 1(8) — 400 for some k € [1, N].

Finally, by now it is clear how to prove the following result.

Theorem 3.9. Assume that sfi(s) > 0 for every s € R, k € [1,N], and

(ii) limsup,_,, IT’“‘(;Q) = +o0 for some k € [1, N].

Then, for each \ € <O, p SWPe>0 SN Fk(p)}), problem (N,\i) admits at

least two constant-sign solutions (one positive and one negative).
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