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Abstract. In this paper, we investigate the existence of constant-sign solutions for a non-
linear Neumann boundary value problem involving the discrete p-Laplacian. Our approach
is based on an abstract local minimum theorem and truncation techniques.

Keywords: constant-sign solution, difference equations, Neumann problem.

Mathematics Subject Classification: 39A10, 39A12, 34B15.

1. INTRODUCTION

Nonlinear discrete problems are important mathematical models in various research
fields such as computer science, mechanical engineering, astrophysics, control sys-
tems, artificial or biological neural networks, economics, fluid mechanics, image pro-
cessing and many others. During the last few decades, many authors have inten-
sively investigated various kinds of nonlinear discrete problems by using different
tools, as for instance, fixed point theorems and sub-super solutions methods. Of
these topics see [4–6, 22] and the reference therein. For general references on dif-
ference equations and their applications we also cite [1] and [21]. In particular, by
using variational methods, the existence and multiplicity of solutions for nonlinear
difference equations have been studied in many papers, usually, under a suitable
(p− 1)−sublinear or (p− 1)−superlinear growth condition at infinity on the nonlin-
earities, see [2,3,6–10,12–15,17,18,20,23,25]. For a complete overview on variational
methods on finite Banach spaces and discrete problems, see [11].

In this paper, we investigate the existence of constant-sign solutions for the fol-
lowing nonlinear discrete Neumann boundary value problem

{
−∆(φp(∆u(k − 1))) + q(k)φp(u(k)) = λfk(u(k)), k ∈ [1, N ],

∆u(0) = ∆u(N) = 0,
(Nλ,f )
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where λ is a positive parameter, N is a fixed positive integer, [1, N ] is the discrete
interval {1, . . . , N}, φp(s) := |s|p−2s, 1 < p < +∞ and for all k ∈ [1, N ], q(k) > 0,
∆u(k) := u(k + 1)− u(k) denotes the forward difference operator and fk : R → R is
a continuous function for all k ∈ [1, N ].
More precisely, we obtain a suitable interval of parameters for which problem
(Nλ,f ) admits constant-sign solutions which are local minimizers of the correspond-
ing Euler-Lagrange functional. First, we consider the case in which problem (Nλ,f )
does not have the trivial solution and the existence of a nonzero solution is ensured
whenever the parameter λ belongs to a well determined interval (Theorem 3.1). Such
solutions, roughly speaking, are positive when fk(0) ≥ 0 for every k ∈ [1, N ] (The-
orem 3.3, Corollary 3.4). We emphasize that to achieve our goal, we do not assume
any growth condition at infinity on the nonlinearities.

Next, if problem (Nλ,f ) admits the trivial solution, then the existence of at least
one positive solution is established under the more restrictive condition that the non-
linearities fk are superlinear at zero (Theorem 3.7).

The existence of a negative solution is also ensured by similar arguments to those
described before (Theorem 3.5, Corollary 3.6). Combining the previous two situations,
the existence of at least two constant-sign solutions, one positive and one negative, is
also shown (Theorem 3.9).

For completeness, we observe that the results given here are new also for a non-
linear discrete problem with Dirichlet boundary conditions involving the p-Laplacian
for p 6= 2. While, for p = 2 and q(k) = 0 for every k ∈ [1, N ], similar results have
been already given in [11] and for nonlinear algebraic systems in [12]. The existence
of two constant-sign solutions for a Dirichlet problem is treated in [15], for p = 2 and
provided that the functions fk are superlinear at infinity.

Finally, we point out that multiple solutions for nonlinear discrete depending-
-parameter problems are investigated in [8, 13,14,16,19].

2. MATHEMATICAL BACKGROUND

In the N -dimensional Banach space

X = {u : [0, N + 1]→ R : ∆u(0) = ∆u(N) = 0},
we consider the norm

‖u‖ :=

(
N+1∑

k=1

|∆u(k − 1)|p +
N∑

k=1

q(k)|u(k)|p
)1/p

for all u ∈ X.

Moreover, we will use also the equivalent norm

‖u‖∞ := max
k∈[0,N+1]

|u(k)| for all u ∈ X.

For our purpose, the following inequality will be useful

‖u‖∞ ≤ ‖u‖q−1/p for all u ∈ X, where q := min
k∈[1,N ]

qk. (2.1)
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To describe the variational framework of problem (Nλ,f ), we introduce the follow-
ing two functions

Φ(u) :=
‖u‖p
p

and Ψ(u) :=

N∑

k=1

Fk(u(k)) for all u ∈ X, (2.2)

where Fk(t) :=
∫ t

0
fk(ξ)dξ for every (k, t) ∈ [1, N ] × R. A direct computation shows

that Φ and Ψ are two C1−functions on X and taking into account that

−
N∑

k=1

∆(φp(∆u(k − 1)))v(k) =
N+1∑

k=1

φp(∆u(k − 1))∆v(k − 1) for all u, v ∈ X,

it is easy to verify, see also [25], that the following result holds.

Lemma 2.1. A vector u ∈ X is a solution of problem (Nλ,f ) if and only if u is a
critical point of the function Iλ = Φ− λΨ.

For the reader convenience, we recall here the main tool used to achieve our goal,
an abstract local minimum theorem given in [11, Theorem 3.3], which is a new version
of [10, Theorem 1.5].

Theorem 2.2. Let (X, ‖·‖) be a finite dimensional Banach space and let Iλ : X → R
be a function satisfying the following structure hypothesis:

(H) Iλ(u) := Φ(u)− λΨ(u) for all u ∈ X, where Φ,Ψ : X → R are two functions of
class C1 on X with Φ coercive, i.e. lim‖u‖→∞ Φ(u) = +∞, such that

inf
X

Φ = Φ(0) = Ψ(0) = 0,

and λ is a real positive parameter.

Then, let r > 0, for each λ ∈ Λ :=
(
0, r

supΦ−1([0,r]) Ψ

)
, the function Iλ = Φ − λΨ

admits at least a local minimum u ∈ X such that Φ(u) < r, Iλ(u) ≤ Iλ(u) for all
u ∈ Φ−1([0, r]) and I ′λ(u) = 0.

3. MAIN RESULTS

Now, we give the main results.

Theorem 3.1. Let c be a positive constant. Assume that fk(0) 6= 0 for some
k ∈ [1, N ]. Then, for every

λ ∈ Λc :=

(
0,
q

p

cp
∑N
k=1 maxs∈[−c,c] Fk(s)

)
,

problem (Nλ,f ) admits at least one nontrivial solution u such that ‖u‖∞ < c.
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Proof. Fix λ as in Λc. Our aim is to apply Theorem 2.2, by putting Φ and Ψ as in
(2.2) on the space X. An easy computation ensures the Φ and Ψ satisfy condition (H).
Now, we put

r =
q

p
cp.

Taking into account (2.1), for all u ∈ X such that Φ(u) ≤ r, one has

‖u‖∞ ≤ c. (3.1)

Therefore, we have that

supΦ(u)≤r Ψ(u)

r
≤ p

q

∑N
k=1 maxs∈[−c,c] Fk(s)

cp
.

Hence, owing to Theorem 2.2, for each

λ <
q

p

cp
∑N
k=1 maxs∈[0,c] Fk(s)

≤ r

supΦ(u)≤r Ψ(u)
,

the functional Iλ admits a non-zero critical point u ∈ X such that Φ(u) < r. By (3.1)
and Lemma 2.1, we have that u is a solution of (Nλ,f ) such that ‖u‖∞ < c.

Remark 3.2. If we are interested in obtaining the biggest interval of parameters,
it is a simple matter to see that Theorem 3.1 ensures the existence of a nontrivial
solution if we replace the interval Λc with the following

Λ :=

(
0,
q

p
sup
c>0

cp
∑N
k=1 maxs∈[−c,c] Fk(s)

)
.

Of course, in this case we lose the estimate on the maximum of the solution.

The next result establishes the existence of a positive solution.

Theorem 3.3. Let c be a positive constant. Assume that fk(0) ≥ 0 for every k ∈ [1, N ]
and fk(0) 6= 0 for some k ∈ [1, N ]. Then, for every

λ ∈ Λ+
c :=

(
0,
q

p

cp
∑N
k=1 maxs∈[0,c] Fk(s)

)
,

problem (Nλ,f ), admits at least one positive solution u such that ‖u‖∞ < c.

Proof. Since we are interested in obtaining a positive solution for problem (Nλ,f ), we
adopt the following truncation on the functions fk,

f+
k (s) =

{
fk(s), if s ≥ 0,
fk(0), if s < 0.

Fixed λ ∈ Λ+
c . Working with the truncations f+

k , since we have that fk(0) 6= 0 for
some k ∈ [1, N ], Theorem 3.1 ensures a nontrivial solution for problem (Nλ,f+) such
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that ‖u‖∞ < c. Now, to prove the u is nonnegative, we exploit the fact that u is a
critical point of the energy functional Iλ = Φ−λΨ associated to problem (Nλ,f+). In
other words, we have that u ∈ X satisfies the following condition:

N+1∑

k=1

φp(∆u(k − 1))∆v(k − 1) +
N∑

k=1

q(k)φp(u(k))v(k)

=
N∑

k=1

f+
k (u(k))v(k) for all u, v ∈ X.

(3.2)

From this, taking as test function v = −u−, it is a simple computation to prove that
‖u−‖ = 0, that is u is nonnegative. Moreover, arguing by contradiction, we show
that u is also a positive solution of problem (Nλ,f ). Suppose that u(k) = 0 for some
k ∈ [1, N ]. Being u a solution of problem (Nλ,f ) we have

φp(∆u(k − 1))− φp(∆u(k)) = fk(0) ≥ 0,

which implies that

0 ≥ −|u(k − 1)|p−2u(k − 1)− |u(k + 1)|p−2u(k + 1) ≥ 0.

So, we have that u(k − 1) = u(k + 1) = 0. Hence, iterating this process, we get that
u(k) = 0 for every k ∈ [1, N ], which contradicts that u is nontrivial and this completes
the proof.

Corollary 3.4. Let c be a positive constant. Assume that fk(0) > 0 for every
k ∈ [1, N ]. Then, for every

λ ∈ Λ̃+
c :=

(
0,
q

p

cp
∑N
k=1 Fk(c)

)
,

problem (Nλ,f ), admits at least one positive solution u such that ‖u‖∞ < c.

Clearly, with analogous arguments, we can prove the following results on the ex-
istence of negative solutions.

Theorem 3.5. Let c be a positive constant. Assume that fk(0) ≤ 0 for every k ∈ [1, N ]
and fk(0) 6= 0 for some k ∈ [1, N ]. Then, for every

λ ∈ Λ−c :=

(
0,
q

p

cp
∑N
k=1 maxs∈[−c,0] Fk(s)

)
,

problem (Nλ,f ), admits at least one negative solution u such that ‖u‖∞ < c.

Corollary 3.6. Let c be a positive constant. Assume that fk(0) < 0 for every
k ∈ [1, N ]. Then, for every

λ ∈ Λ̃−c :=

(
0,
q

p

cp
∑N
k=1 Fk(−c)

)
,

problem (Nλ,f ), admits at least one negative solution u such that ‖u‖∞ < c.
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Requiring a more restrictive growth condition at zero on the nonlinearities fk, we
can obtain a positive solution also whenever problem (Nλ,f ) admits the trivial one.
For simplicity, we work with nonnegative nonlinearities.

Theorem 3.7. Assume that fk(t) ≥ 0 for all t ≥ 0 and for all k ∈ [1, N ], and

(i) lim sups→0+
Fk(s)
sp = +∞ for some k ∈ [1, N ].

Then, for each λ ∈
(
0, qp supc>0

cp∑N
k=1 Fk(c)

)
, problem (Nλ,f ) admits at least one posi-

tive solution.

Proof. Fix λ as in the conclusion and c̄ > 0 such that λ < q
p

c̄2∑N
k=1 Fk(c̄)

. Taking into
account the proof of Theorem 3.1, problem (Nλ,f ) admits a solution u which is a
global minimum for the restriction of the function Iλ to the set Φ(u) < q

pc
p. On the

other hand, from (i) there is d < (q/
∑N
k=1 qk)c̄ such that

∑N
k=1 qk
pλ

<
Fk(d)

dp
≤
∑N
k=1 Fk(d)

dp
.

Hence, an easy computation gives that Φ(w) < q
pc
p and Iλ(w) < 0, being w ∈ X

defined by putting w(k) = d for every k ∈ [1, N ]. Therefore, we have Iλ(u) ≤ Iλ(w) <
0, which implies that u 6= 0. To show that u is positive, we argue as in the proof of
Theorem 3.1.

Remark 3.8. It is interesting to point out that Theorem 3.7 guarantees a positive
solution also when fk(0) = 0 for every k ∈ [1, N ]. Moreover, we highlight that Theo-
rem 3.7 continues to hold under a slightly less general condition

(i’) lims→0+
fk(s)
sp−1 = +∞ for some k ∈ [1, N ].

Finally, by now it is clear how to prove the following result.

Theorem 3.9. Assume that sfk(s) ≥ 0 for every s ∈ R, k ∈ [1, N ], and

(ii) lim sups→0
Fk(s)
|s|p = +∞ for some k ∈ [1, N ].

Then, for each λ ∈
(

0, qp supc>0
cp∑N

k=1 max{Fk(−c),Fk(c)}

)
, problem (Nλ,f ) admits at

least two constant-sign solutions (one positive and one negative).
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