Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Methods for measuring deposit parameters are often based on a capacitance or conductivity measurement aimed at estimating, e.g. deposit moisture content. In practice, these methods fail for materials with a low degree of homogeneity, a diverse porous structure or high conductivity, e.g. due to a high water content. This article demonstrates an approach that enables a more precise estimation of the parameters of any deposit. The presented method involves the use of a measuring system in a charge amplifier configuration and the application of a technique using lock-in detection or a lock-in voltmeter to determine resistance and capacitance parameters of a deposit based on signals received from the measuring system. This method can be successfully used wherever the test deposit material is highly heterogeneous and contains both dielectric and conductive materials. The article presents an example of a solution to a measuring system using two planar electrodes that can be dimensioned depending on the deposit dimensions. It is followed by a presentation of a method for converting the signal from the measuring system into impedance parameters of the deposit using a lock-in voltmeter. The analysis of the operation of the entire measuring system was modelled in Matlab/Simulink, and the operation results were presented.
Słowa kluczowe
Rocznik
Tom
Strony
67--81
Opis fizyczny
Bibliogr. 18 poz., rys., wykr., zdj.
Twórcy
autor
- Katedra Elektrotechniki, Energetyki, Elektroniki i Automatyki, Uniwerssytet Warmińsko-Mazurski, ul. Oczapowskiego 11, 10-718 Olsztyn, phone: 89 523-43-64
Bibliografia
- Ambika M., Manikandan K., Padmanaban R. 2019. Design and Fabrication of Electrical Capacitance Tomography Sensor with Signal Conditioning. Biomed Research Journal BMRJ, 3(2): 79-85.
- Baxter L. 1997. Capacitive Sensors. Design and Applications. IEEE Press Series on Electronics Technology. Robert J. Herrick, Series Editor.
- Characteristic and use charge amplifier. 2001. Technical information SD-37. Hamamatsu.
- Fuchs A., Zangl H., Holler G. 2008. Capacitance-Based Sensing of Material Moisture in Bulk Solids: Applications and Restrictions. Lecture Notes in Electrical Engineering, 20: 235-248.
- Khoshbakht M., Lin M. 2006. Development of an electrical time domain reflectometry (ETDR) distributed moisture measurement technique for porous media. Measurement Science and Technology, 17(11): 2989.
- Kraszewski A., Trabelsi S., Nelson S. 1999. Moisture content determination in grain by measuring microwave parameters. Measurement Science and Technology, 8(8): 857. DOI:10.1088/0957-0233/8/8/004.
- Maurice A., Shipley B. 2012. Non-destructive estimation of root mass using electrical capacitance on ten herbaceous species. Plant and Soil, 355(1-2): 41-49. DOI:10.1007/s11104-011-1077-3.
- Roffe J. 1997. A high-sensitivity flexible – excitation electrical capacitance tomography system. Institute of Science and Technology, Manchester.
- Saied I., Meribout M. 2016. Electronic hardware design of electrical capacitance tomography systems. In: Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences. Royal Society. DOI: https://doi.org/10.1098/rsta.2015.0331.
- Smolik W., Kryszyn J., Olszewski T., Szabatin R. 2017. Methods of small capacitance measurement in electrical capacitance tomography. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 7(1): 105-110.
- Tan Y., Miao Z., Abdul M., Grift T., Ting K. 2017. Electrical capacitance as a proxy measurement of miscanthus bulk density, and the influence of moisture content and particle size. Computers and Electronics in Agriculture, 134: 102–108.
- Tomkiewicz D. 2009. Budowa i działanie czujnika wilgotności ziarna zboża wykorzystującego promieniowanie w zakresie bliskiej podczerwieni. Inżynieria Rolnicza, 6(115).
- Wegleiter H. 2006. Low-Z Carrier Frequency Front-End for Electrical Capacitance Tomography Applications. Dissertation. Graz University of Technology, Austria.
- Wobschall D., Lakshmanan D. 2005. Wireless soil moisture sensor based on fringing capacitance. Proc. of IEEE Sensors, p. 8–11.
- Wypych P. 2001. Dilute-phase pneumatic conveying problems and solutions. In: Handbook of Conveying and Handling of Particulate Solids. Eds. A. Levy, H. Kalman. Elsevier Science, Amsterdam, p. 303–318.
- Yang W.Q. 1996. Hardware design of electrical capacitance tomography systems. Meas. Sci. Technol., 7: 225–232.
- Yang W.Q., Stott A.L., Beck M.S., Xie C.G. 1995. Development of capacitance tomographic imaging systems for oil pipeline measurements. Rev. Sci. Instrum., 66: 4326–4332.
- Yang W.Q., York T.A. 1999. New AC – based capacitance tomography system. IEE Proc-Sci. Measurement Technology, 146(1): 47–53.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a41c39e0-d8da-4170-a86c-4636cdc37830