Identyfikatory
Warianty tytułu
Applying vibrational spectroskopy in an analysis of phytochemicals and nutrients in natural and food products
Języki publikacji
Abstrakty
The prevalence of lifestyle diseases and trends related to healthy eating contribute to the constant search for chemical compounds with specific biological activity. Studies are conducted on plants and substances of natural origin that have been used in medicine for millennia. Techniques of vibrational spectroscopy are an underrated group of methods enabling direct analysis of plant raw material and food in their native forms. The presented examples of Arabidopsis tissues, various species and hybrids of poplar and Cistus herb classification, as well as quantitative analyses of active compounds in plant material and pharmaceutical products and determination of physicochemical parameters of common food (i.e. milk, yoghurts, pasta and flour), demonstrate the possibility of using vibrational spectroscopy for comprehensive analysis of samples of natural origin. Typical measurement techniques and chemometric methods are briefly described in this paper. The scheme of quantitative analysis based on vibrational spectra is shown and the impact of selected experimental parameters on the accuracy of the obtained results is discussed. The imaging techniques used to analyse the changes in plant tissue structures caused by genetic mutations were also presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
745--774
Opis fizyczny
Bibliogr. 64 poz., rys., tabl., wykr.
Twórcy
autor
- Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 14, 50-383 Wrocław
autor
- Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
- [1] C. Manach, A. Scalbert, C. Morand, C. Remesy, L. Jimenez, Am. J. Clin. Nutr., 2004, 79, 727.
- [2] S. Quideau, D. Deffieux, C. Douat-Casassus, L. Pouysegu, Angew. Chem. Int. Ed., 2011, 50, 586.
- [3] C.J. Dillard, J.B. German, J. Sci. Food Agric., 2000, 80, 1744.
- [4] I. Ignat, I. Volf, V.I. Popa, Food Chem., 2011, 126, 1821.
- [5] R. Tsao, Z.Y. Deng, J. Chromatogr. B Biomed. Appl., 2004, 812, 85.
- [6] M. Butnariu, C.Z. Coradini, Chem. Cent. J., 2012, 6 . doi:10.1186/1752-153x-6-35
- [7] Spektroskopia oscylacyjna. Od teorii do praktyki (red. K Małek), PWN, Warszawa, 2016.
- [8] Infrared and Raman spectroscopy: Methods and Applications (ed. B. Schrader), Wiley-VCH, Weinheim, 2000.
- [9] Modern techniques in applied molecular spectroscopy (ed. F.M. Mirabella), J. Willey & Sons, New York, 1998.
- [10] Handbook of Vibrational Spectroscopy (eds. J. Chalmers, P. Griffiths), John Wiley & Sons, Chichester, UK, 2002.
- [11] S. Lohumi, S. Lee, H. Lee, B.K. Cho, Trends Food Sci. Technol., 2015, 46, 85.
- [12] C. Gendrin, Y. Roggo, C. Collet, J. Pharm. Biomed. Anal., 2008, 48, 53.
- [13] P.J. Brimmer, P.R. Griffiths, Appl. Spectrosc., 1988, 42, 242.
- [14] T. Czaja, S. Mazurek, R. Szostak, Talanta, 2016, 161, 655.
- [15] H. Wikstrom, I.R. Lewis, L.S. Taylor, Appl. Spectrosc., 2005, 59, 934.
- [16] D. Yang, Y. Ying, Appl. Spectrosc. Rev., 2011,46, 539.
- [17] M. Baranska, H. Schulz, E. Joubert, M. Manley, Anal. Chem., 2006, 78, 7716.
- [18] H. Schulz, M. Barańska, Vib. Spectrosc., 2007, 43, 13.
- [19] K.B. Bec, J. Grabska, G.K. Bonn, M. Popp, C.W. Huck, Front. Plant Sci., 2020, 11, doi:10.3389/fpls.2020.01226
- [20] R. Deidda, P.Y. Sacre, M. Clavaud, L. Coic, H. Avohou, P. Hubert, E. Ziemons, TrAC, Trends Anal. Chem., 2019, 114, 251.
- [21] D.P. Aykas, A. Menevseoglu, Food Control, 2021, 121, doi:10.1016/j.foodcont.2020.107670
- [22] C.K. Pezzei, S.A. Schonbichler, C.G. Kirchler, J. Schmelzer, S. Hussain, V.A. Huck-Pezzei, M. Popp, J. Krolitzek, G.K. Bonn, C.W. Huck, Talanta, 2017, 169, 70.
- [23] H. Yaman, D.P. Aykas, R. Jimenez-Flores, L.E. Rodriguez-Saona, J. Dairy Sci., 2022, 105, 40.
- [24] S. Bureau, D. Cozzolino, C.J. Clark, Postharvest Biol. Technol., 2019, 148, 1.
- [25] A. Rinnan, F. van den Berg, S.B. Engelsen, TrAC, Trends Anal. Chem., 2009, 28, 1201.
- [26] M.L. Vigni, C. Durante, M. Cocchi, Exploratory Data Analysis, w Chemometrics in Food Chemistry (ed. F. Marini) , Elsevier, Amsterdam, 2013.
- [27] M. Otto, Chemometrics, Wiley-Vch, New York, 1999.
- [28] H. Martens, T. Naes, Multivariate Calibration, John Wiley & Sons, Chichester, 1989.
- [29] S. Mazurek, A. Mucciolo, B.M. Humbel, C. Nawrath, Plant J., 2013, 74, 880.
- [30] S. Mazurek, I. Garroum, J. Daraspe, D. De Bellis, V. Olsson, A. Mucciolo, M.A. Butenko, B.M. Humbel, C. Nawrath, Plant Physiol., 2017, 173, 1146.
- [31] S. Mazurek, M. Wlodarczyk, S. Pielorz, P. Okinczyc, P.M. Kus, G. Dlugosz, D. Vidal-Yanez, R. Szostak, Molecules, 2022, 27, doi:10.3390/molecules27123954.
- [32] S. Pielorz, I. Fecka, K. Bernacka, S. Mazurek, Molecules, 2022, 28, doi:10.3390/molecules28010161.
- [33] S. Mazurek, I. Fecka, M. Węglińska, R. Szostak, Talanta, 2018, 189, 308.
- [34] R. Kramer, Chemometric techniques for quantitative analysis, Marcel Dekker, New York, 1998.
- [35] R. Szostak, S. Mazurek, Analyst, 2002, 127, 144-148.
- [36] R. Szostak, S. Mazurek, Drug Test. Anal., 2013, 5, 126.
- [37] S. Mazurek, R. Szostak, Vib. Spectrosc., 2016, 83, 1.
- [38] S. Mazurek, R. Szostak, Vib. Spectrosc., 2017, 93, 57.
- [39] S. Mazurek, R. Szostak, J. Pharm. Biomed. Anal., 2008, 48, 814.
- [40] S. Mazurek, R. Szostak, Vib. Spectrosc., 2011, 57, 157.
- [41] S. Mazurek, R. Szostak, Food Chem., 2011, 125, 1051.
- [42] S. Pielorz, M. Weglinska, S. Mazurek, R. Szostak, Molecules, 2022, 27, doi:10.3390/molecules27238276
- [43] S. Mazurek, K. Pichlak, R. Szostak, Processes, 2021, 9, doi:10.3390/pr9010008.
- [44] B.Y. Li, A. Calvet, Y. Casamayou-Boucau, C. Morris, A.G. Ryder, Anal. Chem., 2015, 87, 3419.
- [45] Willow Bark (Salicis cortex) Monograph, European Pharmacopoeia, 10th ed., Council of Europe, Strasbourg, 2020.
- [46] T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, J.P. Remon, TrAC, Trends Anal. Chem., 2002, 21, 869.
- [47] K.A. Esmonde-White, M. Cuellar, C. Uerpmann, B. Lenain, I.R. Lewis, Anal. Bioanal. Chem., 2017, 409, 637.
- [48] T. De Beer, A. Burggraeve, M. Fonteyne, L. Saerens, J.P. Remon, C. Vervaet, Int. J. Pharm., 2011, 417, 32.
- [49] M. Węglińska, R. Szostak, A. Kita, A. Nemś, S. Mazurek, Talanta, 2020, 212, 8.
- [50] T. Czaja, A. Sobota, R. Szostak, Foods, 2020, 9, doi:10.3390/foods9030280
- [51] T. Czaja, E. Kuzawinska, A. Sobota, R. Szostak, Talanta, 2018, 178, 294.
- [52] T. Czaja, S. Mazurek, R. Szostak, Food Chem., 2016, 211, 560.
- [53] T. Czaja, M. Baranowska, S. Mazurek, R. Szostak, Spectrochim. Acta A, 2018, 196, 413.
- [54] S. Mazurek, R. Szostak, T. Czaja, A. Zachwieja, Talanta, 2015, 138, 285.
- [55] B.K. Hart, P.R. Griffiths, Environ. Sci. Technol., 2000, 34, 1337.
- [56] B.K. Hart, R.J. Berry, P.R. Griffiths, Environ. Sci. Technol., 2000, 34, 1346.
- [57] B.T. Bowie, D.B. Chase, P.R. Griffiths, Appl. Spectrosc., 2000, 54, 164A.
- [58] B.T. Bowie, D.B. Chase, P.R. Griffiths, Appl. Spectrosc., 2000, 54, 200A.
- [59] N. Gierlinger, M. Schwanninger, Plant Physiol, 2006, 140, 1246.
- [60] R. Baranski, M. Baranska, H. Schulz, Planta, 2005, 222, 448.
- [61] H. Schulz, M. Barańska, R. Barański, Biopolymers, 2005, 77, 212-221.
- [62] M. Szymanska-Chargot, M. Chylinska, P.M. Pieczywek, P. Rosch, M. Schmitt, J. Popp, A. Zdunek, Planta, 2016, 243, 935.
- [63] A. Saletnik, B. Saletnik, C. Puchalski, Molecules, 2021, 26, doi:10.3390/molecules26061537
- [64] P. Bock, M. Felhofer, K. Mayer, N. Gierlinger, Front. Plant Sci., 2021, 12, doi:10.3389/ fpls.2021.793330.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4194c67-7feb-4d5e-9916-23e33113dca2