PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of positronium imaging performance of a simulated modular J-PET scanner using GATE software

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, a novel PET imaging method - positronium imaging - has been proposed to take advantage of previously unused information about the positronium states. The first ex-vivo and in-vivo images of positronium characteristics were acquired with the J-PET tomograph. Complementary to the standard annihilation photon’s detection, positronium imaging also requires the registration of the prompt photon, which follows β+ decay. To that end, the introduction of an additional energy threshold for prompt γ registration and optimization of the energy window for annihilation γ are required. This simulation-based work undertook the mentioned task in the case of the modular J-PET scanner. Based on the 44Sc radioisotope, the energy window for annihilation photons was established to 0.2 MeV - 0.37 MeV, while the threshold for prompt gamma was fixed at 0.37 MeV, closely following the end of the energy window for annihilation photons.
Rocznik
Strony
80--86
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Moskal P. Positronium imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Manchester, UK: IEEE Xplore; 2020.
  • 2. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nat Rev Phys 2019;1:527-9.
  • 3. Bass SD, Mariazzi S, Moskal P, Stępień E. Colloquium: Positronium physics and biomedical applications. Rev Mod Phys 2023;95:021002.
  • 4. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64:055017.
  • 5. Moskal P, Kisielewska D, Y Shopa R, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2γ positronium imaging with the total-body PET scanners. EJNMMI Phys 2020;7:1-16.
  • 6. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021;12:5658.
  • 7. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394.
  • 8. Moskal P. The first in-vivo positronium imaging of the human brain. In: 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Milano, Italy; 2022.
  • 9. Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: A New Technology for the Whole-body PET Imaging. Acta Phys Pol B 2017;48:1567-76.
  • 10. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys Med Biol 2021;66:175015.
  • 11. Dulski K. PALS Avalanche - A New PAL Spectra Analysis Software. Acta Phys Pol A 2020;137:167.
  • 12. Shibuya K, Saito H, Tashima H, Yamaya T. Using inverse Laplace transform in positronium lifetime imaging. Phys Med Biol 2022;67:025009.
  • 13. Qi J, Huang B. Positronium Lifetime Image Reconstruction for TOF PET. IEEE Trans. Med. Imaging 2022;41:2848.
  • 14. Zhu Z, Kao C-M, Huang H-H. A statistical reconstruction algorithm for positronium lifetime imaging using time-of-flight positron emission tomography. 2022; arXiv:2206.06463v3.
  • 15. Shopa R, Dulski K. Multi-photon time-of-flight MLEM application for the positronium imaging in J-PET. Bio-Algorithms and Med-Systems 2022;18:135-43.
  • 16. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner. J Nucl Med. 2019;60:299-303.
  • 17. Karp JS, Viswanath V, Geagan MJ, Muehllehner G, Pantel AR, Parma MJ, et al. PennPET Explorer: Design and Preliminary Performance of a Whole-Body Imager. J Nucl Med. 2020;61:136-43.
  • 18. Prenosil GA, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, et al. Performance Characteristics of the Biograph Vision Quadra PET/CT System with a Long Axial Field of View Using the NEMA NU 2-2018 Standard. J Nucl Med. 2022;63:476-84.
  • 19. Pratt EC, Lopez-Montes A, Volpe A, Crowley MJ, Carter LM, Mittal V, et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat Biomed Eng. 2023;7(8):1028-39.
  • 20. Fukuchi T, Shigeta M, Haba H, Mori D, Yokokita T, Komori Y, et al. Image reconstruction method for dual-isotope positron emission tomography. Journal of Instrum. 2021;16(01):P01035.
  • 21. Shimazoe K, Uenomachi M. Multi-molecule imaging and inter-molecular imaging in nuclear medicine. Bio-Algorithms and Med-Systems 2022;18(1):127-34.
  • 22. Uenomachi M, Shimazoe K, Takahashi H. A double photon coincidence detection method for medical gamma-ray imaging. Bio-Algorithms and Med-Systems 2022;18(1):120-6.
  • 23. Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+ +γ coincidence PET: an overview. Appl Radiat Isot. 2020;155:108898.
  • 24. Matulewicz T. Radioactive nuclei for β+ +γ PET and theranostics: selected candidates. Bio-Algorithms and Med-Systems 2021;17(4):235-9. https://doi.org/10.1515/bams-2021-0142.
  • 25. Grignon C. Nuclear medical imaging using β+γ coincidences from 44Sc radio-nuclide with liquid xenon as detection medium. Nucl Instr and Meth A 2007;571:142-5.
  • 26. Thirolf PG, Lang C, Parodi K. Perspectives for Highly-Sensitive PET-Based Medical Imaging Using β+γ Coincidences. Acta Phys Polon A 2015;127:1441-44.
  • 27. Lang C, Habs D, Parodi K, Thirolf PG. Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+γ coincidences. Journal of Instrum. 2014;9:P01008.
  • 28. Kowalski P, Wiślicki W, Raczyński L, Alfs D, Bednarski T, Białas P, et al. Scatter Fraction of the J-PET Tomography Scanner. Acta Phys Polon B 2016;47:549.
  • 29. Moskal P, Stępień E. Prospects and clinical perspectives of total body PET imaging using plastic scintillators. Pet Clin 2020;15:439-52.
  • 30. Sarrut D, Bała M, Bardiès M, Bert J, Chauvin M, Chatzipapas K, et al. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol 2021;66:10TR03.
  • 31. Sarrut D, Sarrut D, Arbor N, Baudier T, Borys D, Etxebeste A, Fuchs H, et al. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol 2022;67:184001.
  • 32. Coussat A, Krzemień W, Baran J, Parzych S. Development of the Normalization Method for the Jagiellonian PET Scanner. Acta Phys Pol A 2022;142:414.
  • 33. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instr and Meth A 2014;764:317-21.
  • 34. Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, et al. Developing a Novel Positronium Biomarker for Cardiac Myxoma Imaging. EJNMMI Phys 2023;10:22.
  • 35. Jasińska B, Zgardzińska B, Chołubek G, Gorgol M, Wiktor K, Wysogld K, et al. Human tissues investigation using PALS technique. Acta Phys Pol B. 2017;48:1737-47.
  • 36. Bass S D. QED and Fundamental Symmetries in Positronium Decays. Acta Phys Polon B 2019;50:1319.
  • 37. Ghabrial A, Franklin DR, Zaidi H. A Monte Carlo simulation study of scatter fraction and the impact of patient BMI on scatter in long axial field-of-view PET scanners. Z Med Phys. 2021;31:305-15.
  • 38. Sharma S, Chhokar J, Curceanu C, Czerwinski E, Dadgar M, Dulski K, et al. Estimating relationship between the time over threshold and energy loss by photons in plastic scintillators used in the J-PET scanner. EJNMMI Phys 2020;7:39.
  • 39. Masełek R, Krzemień W, Klimaszewski K, Raczyński L, Kowalski P, Shopa R, Wiślicki W, et al. Towards 2+1 photon tomography: Energy-based selection of two 511 keV photons and a prompt photon with the J-PET scanner. 2018;arXiv:1803.00996.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a419102b-9087-4bce-a53f-78b1ff8fcd87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.