Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper addresses the problem of experimental studies of miniature tilt sensors based on low-range accelerometers belonging to Microelectromechanical Systems (MEMS). A custom computer controlled test rig is proposed, whose kinematics allows an arbitrary tilt angle to be applied (i.e. its two components: pitch and roll over the full angular range). The related geometrical relationships are presented along with the respective uncertainties resulting from their application. Metrological features of the test rig are carefully evaluated and briefly discussed. Accuracy of the test rig is expressed in terms of the respective uncertainties, as recommended by ISO; its scope of application as well as the related limitations are indicated. Even though the test rig is mostly composed of standard devices, like rotation stages and incremental angle encoder, its performance can be compared with specialized certified machines that are very expensive. Exemplary results of experimental studies of MEMS accelerometers realized by means of the test rig are presented and briefly discussed. Few ways of improving performance of the test rig are proposed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
351--362
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
autor
- Warsaw University of Technology, Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Boboli 8, 02-525 Warsaw, Poland
Bibliografia
- [1] Bütefisch, S., Schoft, A., Büttgenbach, S. (2000). Three-Axes Monolithic Silicon Low-g Accelerometer. J. Microelectromech. Syst., 9(4), 551-556.
- [2] Šipoš, M., Pačes, P., Roháč, J., Nováček, P. (2012). Analyses of triaxial accelerometer calibration algorithms. IEEE Sensors J., 12(5), 1157-1165.
- [3] Frosio, I., Pedersini, F., Borghese, N.A. (2012). Autocalibration of Triaxial MEMS Accelerometers With Automatic Sensor Model Selection. IEEE Sensors J., 12(6), 2100-2108.
- [4] Acar, C., Shkel, A. (2003). Experimental evaluation and comparative analysis of commercial variablecapacitance MEMS accelerometers. J. Micromech. and Microeng., 13(5), 634-645.
- [5] Won, S.P., Golnaraghi, F. (2010). A Triaxial Accelerometer Calibration Method Using a Mathematical Model. IEEE Trans. Instr. Meas., 59(8), 2144-2153.
- [6] Yun, S.S., Jeong, D.H., Wang, S.M., Je, C.H., Lee, M.L., Hwang, G., Choi, C.A., Lee, J.H. (2009), Fabrication of morphological defect-free vertical electrodes using a (1 1 0) silicon-on-patterned-insulator process for micromachined capacitive inclinometers. J. Micromech. Microeng., (19), 035025.
- [7] Qian, J., Fang, B., Yang, W., Luan, X., Nan, H. (2011). Accurate Tilt Sensing with Linear Model. IEEE Sensors J., 11(10), 2301-2309.
- [8] Ang, W.T., Khosla, P.K., Riviere, C.N. (2007). Nonlinear regression model of a low-g MEMS accelerometer. IEEE Sensors J., 7(1), 81-88.
- [9] Latt, W.T., Veluvolu, K.C., Ang, W.T. (2011). Drift-Free Position Estimation of Periodic or Quasi- Periodic Motion using Inertial Sensors. Sensors, 11(6), 5931-5951.
- [10] Kibrick, R., Robinson, L., Cowley, D. (1995). An evaluation of precision tilt-sensors for measuring telescope position. In Proc. Telescope Contr. Syst., SPIE Symposium on OE/Aerosp. Sensing and Dual Use Photon., Orlando, FL, USA, 364-376.
- [11] Popowski, S. (2008). Determining Pitch and Roll in Inexpensive Land Navigation Systems. J. Aeronautica Integra, 1(3), 93-97.
- [12] Łuczak, S., Oleksiuk, W., Bodnicki, M. (2006). Sensing Tilt with MEMS Accelerometers. IEEE Sensors J., 6(6), 1669-1675.
- [13] Łuczak, S. (2013). Effects of Misalignments of MEMS Accelerometers in Tilt Measurements. In Brezina, T., Jabloński, R. (Eds). Mechatronics 2013. Recent Technological and Scientific Advances, Berlin Heidelberg: Springer-Verlag, 393-400.
- [14] Dias Pereira, J.M., Viegas, V., Postolache, O., Girão, P.S. (2013). A smart and distributed measurement system to acquire and analyze mechanical motion parameters. Metrol. Meas. Syst., 20(3), 465-47.
- [15] European co-operation for Accreditation (1999). Expression of the Uncertainty of Measurement in Calibration. EA-4/02. Geneva: International Organization for Standardization.
- [16] Advantech Co., Ltd. (2007). PCI-1716/1716 L 16-bit, 250 kS/s High-Resolution Multifunction Card. Startup Manual.
- [17] Jenoptik Carl Zeiss JENA GmbH (1989). IDW Incremental Transillumination Angle-Measuring System.
- [18] Chen, H., Bao, M., Zhu, H., Shen, S. (1997). A piezoresistive accelerometer with a novel vertical beam structure. Sensors & Actuators, A 63, 19-25.
- [19] MEMSIC Inc. (2005). Low g Accelerometer Non-Linearity Measurement. AN-00MX-014 Application Note n/r 5/12/03.
- [20] Parsa, K., Lasky, T.A., Ravani, B. (2007). Design and Implementation of a Mechatronic, All- Accelerometer Inertial Measurement Unit. IEEE/ASME Trans. Mechatr., 12(6), 640-650.
- [21] Liu, Y., Liu, G. (2009). Track-Stair Interaction Analysis and Online Tipover Prediction for a Self- Reconfigurable Tracked Mobile Robot Climbing Stairs, IEEE/ASME Trans. Mechatr., 14(5), 528-538.
- [22] Łuczak, S. (2007). Advanced Algorithm for Measuring Tilt with MEMS Accelerometers. In Jablonski, R., Turkowski, M. and Szewczyk, R. (Eds). Recent Advances in Mechatronics, Berlin Heidelberg: Springer-Verlag, 511-515.
- [23] Analog Devices Inc. (2000). Low Cost ±2g Dual Axis Accelerometer with Duty Cycle Output, ADXL 202E.
- [24] Sentera Technology Corporation (2003). AX301 Three-Axis Accelerometer Module, Preliminary Specifications.
- [25] Wengierow, M., Sałbut, L., Ramotowski, Z., Szumski. R., Szykiedans, K. (2013). Measurement System Based on Multi-Wavelength Interferometry for Long Gauge Block Calibration. Metrol. Meas. Syst., 20(3), 479-490.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a40d7d69-c104-40f4-9654-3a02d2da7a7d