Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the possibility of constructing the analytical expressions to determine the order of the stress singularities in multi-wedge composites of the most prevalent geometric configurations for the case of antiplane deformation is considered. Particularly, the analytical solutions of the corresponding characteristic equations are constructed for three-wedge systems whose components have such geometric characteristics [wzór] is а half-plane and attached to it wedges with the such apical angles: (in the presence and absence of a slit) [wzór] is а half-plane and attached to it wedges with such apical angles [wzór] (in the presence and absence of the slit with outlet angle to the linear materials interface) [wzór] is а half-plane and attached to it wedges with such apical angles [wzór]. The analytical solutions of characteristic equations for composite wedges composed of [wzór] elements with identical apical angles are constructed as well. Additional studies, the results of which have not been included in the materials of the article due to their inconvenience, indicate to that there are analytical solutions of the characteristic equation for a composite of this type with more elements. The obtained results make it possible to study the stress-strain state in multi-wedge systems of the considered configurations not restricting ourselves only to the vicinity of the wedges convergence point. In addition, the use of analytical solutions of characteristic equations in systems with a large number of wedges having the same apical angles gives the additional possibilities for analysis the angularly functionally graded materials.
Czasopismo
Rocznik
Tom
Strony
45--51
Opis fizyczny
Bibliogr. 20 poz., rys., wz.
Twórcy
autor
- Lviv National Agrarian University
autor
- Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
Bibliografia
- 1. Carpinteri A., Paggi M. 2011. Singular harmonic problems at a wedge vertex: mathematical analogies between elasticity, diffusion, electromagnetism, and fluid dynamics. Journal of Mechanics of Materials and Structures, Vol. 6, Iss. 1-4, 113-125.
- 2. Chen C. H., Wang C. L., Ke C. C. 2009. Analysis of composite finite wedges under anti-plane shear. International Journal of Mechanical Sciences, Vol. 51, 583-597.
- 3. Didukh V., Polishuuk M., Turchyn I. 2014. Mathematical simulation of the saprapel grinding by means of the shock loads. Econtechmod: an international quarterly journal, Vol. 3, No. 4, 3-9.
- 4. Dudyk M. V., Dikhtyarenko Yu. V. 2015. “Trident” Model of Plastic Zone at the End of a Mode I Crack Appearing on the Nonsmooth Interface of Materials. Materials Science, Vol. 50, No 4, 516–526.
- 5. Koguchi H. 1997. Stress Singularity Analysis in Three-Dimensional Bonded Structures. Int. J. Solids Struct. Vol. 34, 461–480.
- 6. Linkov A., Rybarska-Rusinek L. 2008. Numerical methods and models for anti-plane strain of a system with a thin elastic wedge. Archive of Applied Mechanics, Vol. 78, No. 10, 821-831.
- 7. Linkov A., Rybarska-Rusinek L. 2012. Evaluation of stress concentration in multi-wedge systems with functionally graded wedges. International Journal of Engineering Science, Vol. 61, 87-93.
- 8. Linkov A. M., Koshelev V. F. 2006. Multi-wedge points and multi-wedge elements in computational mechanics: evaluation of exponents and angular distribution. Int. J. Solids and Structures, Vol. 43, 5909-5930.
- 9. Makhorkin M., Sulym H. 2010. On determination of the stress-strain state of a multi-wedge system with thin radial defects under antiplane deformation. Civil and environmental engineering reports, Vol. 5, 235-251.
- 10. Makhorkin M., Sulym H. 2007. Asymptotyky i polia napruzhen u klynovii systemi za umov antyploskoi deformatsii. Mashynoznavstvo, No. 1, 8-13. (in Ukrainian).
- 11. Makhorkin M. I. Nykolyshyn M. M. 2016. Construc-tion of integral equations describing limit equilibrium of cylindrical shell with a longitudinal crack under time-varying load. Econtechmod: an international quarterly journal, Vol. 5, No. 3, 141 – 146.
- 12. Paggi M., Carpinteri A. 2008. On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion. Appl. Mech. Rev, Vol. 61, No. 2, Article 020801.
- 13. Savruk Mykhaylo P., Kazberuk Andrzej. 2016. Stress Concentration at Notches. Springer.
- 14. Savruk M. P. 2002. Longitudinal Shear of an Elastic Wedge with Cracks and Notches. Materials Science, Vol. 38, No. 5, 672–684.
- 15. Shahani A. R., Adibnazari S. 2000. Analysis of perfectly bonded wedges and bonded wedges with an interfacial crack under antiplane shear loading // Int. J. Solids Struct., Vol.37, № 19, 2639–2650.
- 16. Tikhomirov V. V. 2015. Stress singularity in a top of composite wedge with internal functionally graded material. St. Petersburg Polytechnical University Journal: Physics and Mathematics, Vol. 1, No. 3, 278-286.
- 17. Tranter C. J. 1948. The use of the Mellin transform in finding the stress distribution in an infinite wedge. Quarterly Journal of Mechanics and Applied Mathematics, No. 1, 125-130.
- 18. Wieghardt K. 1907. Über das Spalten und Zerreissen elastischer Körper. Z. Math. Phys., Vol. 55, 60-103.
- 19. Williams M. L. 1952. Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension. Journal of Applied Mechanics, Vol. 19, No. 4, 526-528.
- 20. Xiaofei H., Weian Y. 2013. Stress singularity analysis of multi-material wedges under antiplane deformation. Acta Mechanica Solida Sinica, Vol. 26, No. 2, 151-160.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a40908ff-4926-4abf-a630-c62e5f2f2b2e