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Abstract. In this paper, the possibility of constructing the 

analytical expressions to determine the order of the stress 

singularities in multi-wedge composites of the most 

prevalent geometric configurations for the case of 

antiplane deformation is considered. Particularly, the 

analytical solutions of the corresponding characteristic 

equations are constructed  for three-wedge systems whose 

components have such geometric characteristics: 

1 2  , 
2  , 

3 2   is а half-plane and attached 

to it wedges with the such apical angles: 2  (in the 

presence and absence of a slit); 
1 4  , 

2  , 

3 3 4   is а half-plane and attached to it wedges with 

such apical angles: 
1 4  , 

2 3 4   (in the presence 

and absence of the slit with outlet angle 4   to the 

linear materials interface); 
1 / 4  , 

2  , 
3 / 4   

is а half-plane and attached to it wedges with such apical 

angles: 1 2 4    . The analytical solutions of 

characteristic equations for composite wedges composed 

of 3, 4n   elements with identical apical angles are 

constructed as well. Additional studies, the results of 

which have not been included in the materials of the 

article due to their inconvenience, indicate to that there 

are analytical solutions of the characteristic equation for a 

composite of this type with more elements. The obtained 

results make it possible to study the stress-strain state in 

multi-wedge systems of the considered configurations not 

restricting ourselves only to the vicinity of the wedges 

convergence point. In addition, the use of analytical 

solutions of characteristic equations in systems with a 

large number of wedges having the same apical angles 

gives the additional possibilities for analysis the angularly 

functionally graded materials. 

Key words: multi-wedge system, antiplane deformation, 

order of the stress singularities, analytical solutions, 

composite wedge. 

INTRODUCTION 

When designing the units of new models of machines 

and building structures of different designated purposes 

(including agricultural), the question of predicting their 

strength and reliability under operating loads arises. 

Because the components of such objects usually consist of 

separate elements interconnected in different ways, they 

have the so-called stress concentrators such as the 

breakpoint of the materials contact surfaces, tips of the slit 

(cracks) and pointed inclusions, wedge-shaped notches 

and points of contact of several materials, etc (the singular 

point) [1-20]. In the vicinity of points of this type, the 

stress fields are singular and clarification of the order of 

their singularity (the growth rate of stresses) is necessary to 

predict the reliability of the projected object [1, 4, 5, 9-14]. 

ANALYSIS OF RECENT RESEARCHES AND 

PUBLICATIONS 

The issue of determination the singularity of stresses 

in the vicinity of special points has attracted the attention 

of researchers long. One of the first suggestions 

concerning the methods of determination the stress 

singularity is given in the work of K. Wieghardt [18] 

(1907), and the subsequent development of these themes 

is in a classical work of M. L. Williams [19]. A detailed 

overview of the works related to this problem is contained 

in the publications [1, 9, 10, 12]. It should be noted that 

the vicinity of singular points is usually modeled by the 

authors with the help of multi-wedge systems whose 

elements have a common tip. In their works, the 

researchers considered the analytical and numerical 

methods for clarification the stress-strain state in multi-

wedge systems and realized the research for their specific 

configurations [2, 8, 15]. However, in analyzing the 

behavior of the stress-field they were mainly restricted to 

the systems, the number of elements of which did not 

exceed four. This, in the first place, is due to the fact that 

using the analytical approaches (complex potentials or 

Mellin's transformation) [17, 15, 20] requires the solution 

of the 2n -order system of linear algebraic equations in 

the case of the antiplane problem and the 4n -order 

system for the plane problem  ( n  is the number of 

elements of the multi-wedge system), and numerical 

methods [6, 8] require further improvement, especially in 

the study of systems containing elements with small 
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apical angles [6]. It is important to note that all these  

methods result in the necessity of using numerical 

procedure of solution the transcendental equations. 

Therefore, when determining the order of the stress 

singularity, we restrict ourselves only to those solutions of 

the characteristic equation that result in the maximum 

singularity when approaching a singular point. So, for an 

arbitrary geometric configuration of a composite wedge, it 

is almost impossible to determine the entire range of 

solutions of the characteristic equation and to write down 

the corresponding expressions for the stress or 

displacement fields in the whole wedge composite. That 

is why the analysis of the stress-strain state is limited only 

by the vicinity of the stress concentrator.  

OBJECTIVE 

The objective of this study is to identify such 

geometric configurations of multi wedge systems for which 

their characteristic equations admit an analytical solution. 

For this purpose, we use the characteristic equations for a 

multi-wedge system under the condition of antiplane 

deformation, constructed in the works [9, 10]. This made it 

possible to find a series of multi-wedge systems such that 

the characteristic equations constructed for them can be 

solved analytically. Then, according to the a known 

procedure, it is easy to construct the corresponding 

expressions for the stresses or displacements field in the 

whole wedge composite. 

STATEMENT OF THE PROBLEM AND INITIAL 

EXPRESSIONS 

Consider a composite composed of an arbitrary 

number n  of ideally coupled heterogeneous elastic, 

isotropic wedges  1,2,...,iS i n  with apical angles 

2
n

i i

i

  
 

 
 
  and shear modulus 

i , respectively, and 

a wedge-shaped notch 1nS   with apical angles 

1

1

2 2
n

n i

i

   



    (Fig. 1).  

We consider that the composite: is under the 

condition of antiplane deformation 0u  , 0v  , 

 ,w w r  ; is referred to the polar coordinate system r , 

  centered at the point of the wedges joint O  (wedge 
iS  

occupies the area 
1i i     , 0 r   , and to 

connecting lines of the wedges iS  and 1iS   the 

coordinates 
1

2
i

i i

i

  


   correspond). On the edges of 

the wedge-shaped notch 1nS   ( 0 0   and 
1

n

n k

k

 


 ) 

the conditions of the first, second or mixed problems of 

the elasticity theory are specified. 

 

Fig. 1. The scheme of multi-wedge system 

In such a system the stress field is described by 

relations [9, 15]: 
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 (1) 

where: 
 ,

Res , i

w p
p





 
 

 
 and   Res , , ipw p p  are 

the residues of the corresponding functions; 
ip  are the 

poles of the function  ,w p   ( Re 1ip   ) and  ,w p   

is the Mellin transform of the displacement which in this 

wedge system is defined as follows [9, 10]: 
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p
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



 (2) 

 

 

1
1

1 1

1 1

1
1

2 2

1 1

sin cos ,

cos cos .

i
i kk k

i i k

k k

i
i kk k

i i k

k k

L p p L p

L p p L p

 
  



 
  






 




 


     


    




 (3) 

The functions    1 1,A p B p  depending on the 

boundary conditions are defined by such expressions [9]: 

1) for the first boundary-value problem of the elasticity theory – 

 
 

 

 

 

 

 
 

   

1 0

1

1 1 1

1
1

2

1 1

0

1

1

1
1

1 1

1 1

1 1

cos cos ,

1
,

sin cos ;

n

n

n
ii i

n n i

i i

n
ii i

n n i

i i

p p
A p

p p p

p p L p

p
B p

p

p p p L p






 




 

 
  

 

 
     

 





      





 

 

 
  







 
  



 (4) 

2) for the second boundary-value problem of the elasticity 

theory–
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 
 

 

 

 

 

1 0

1

2 2

1
1

1

1 1

cos sin ,

n

n
ii i

n n i

i i

w p w p
B p

p p

p L p
p

 
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






 

  
 

 
     
 



 (5) 

 

   
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1 0

1
1

2 2

1 1

,
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n

ii i

n n i
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 (6) 

3) for the mixed boundary-value problem of the elasticity 

theory (depending on its conditions) – 
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
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
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 
     
 




     





 (7) 

or 
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1
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1
1

2

1 1

0

1

1

1
1

4 1

1 1

1

sin sin ,

1
,

cos sin .

n

n
ii i

n n i

i i

n
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n n i

i i
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A p

p p p

p L p
p

p
B p

p
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p






 



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
  
 

 
     

 





     









 
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





 
  



 (8) 

Here  0 1p  ,  1 1n p  ,  0w p ,  1nw p  are 

the Mellin transforms of functions describing the loading 

and displacements, given on the corresponding edges of the 

wedge-shaped notch. 

Thus, for antiplane deformation, the characteristic 

equation for determination the poles of Mellin transform of 

the displacement (2), according to (4) - (8), has the following 

form: 

1) under the conditions of the first boundary-value 

problem of the elasticity theory 

  
1

1

1

1 1

sin cos ( ) 0
n

ii i

n n i

i i

p p L p
 
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




 


   ; (9) 

2) under the conditions of the second boundary-value 

problem – 

  
1

1

2

1 1

sin sin ( ) 0
n

ii i

n n i

i i

p L p
p

 
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




 


   ; (10) 

3) under conditions of mixed boundary-value problem –  

  
1

1

2

1 1

cos cos ( ) 0
n

ii i

n n i

i i

p p L p
 
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




 


   , (11) 

if the stresses are given at 0  , and the displacements at 

n   (case а) and 

 
 

 
1

1

1

1 1

cos sin 0,
n

i i i
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i i
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 
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




 
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      (12) 

if the forces are given at n  , and the displacements at 

0   (case b). 

If the system is a continuous piecewise-homogeneous 

body, composed of n  wedges, we believe that the notch 

1nS 
 turn into a crack (

1 0n   ), and on its edges the 

conditions of an ideal mechanical contact 

0 2
0z z   

 
 
  , 

0 2
0w w

   
   are specified. In 

this case, the characteristic equation has the form:  
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1
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(13) 

Expressions (9) – (13) give us the ability to determine 

the order of stress-singularity in a multi-wedge system 

composed of arbitrary number of elements with arbitrary 

geometric and mechanical characteristics under the 

conditions of longitudinal shear. 

Note that according to the presentation (1) the order of 

the stress fields singularity in the vicinity of the vertex of 

the wedge-shaped notch contained in this system is 

determined by the relation  1 Rei ip  , where 
ip  are 

the roots of the characteristic equation   0j p   

 1,4j  , real part of which belongs to the interval 

   Re 1;0ip   [4, 9]. 

MAIN RESULTS OF THE RESEARCH 

The characteristic equations for wedge systems are 

transcendental and to find their solution the numerical 

methods are to be used. However, for some geometric 

configurations of wedge systems, an analytical solution of 

the corresponding characteristic equation is possible.  

1. HALF-PLANE WITH WEDGES ATTACHED TO IT 

In engineering, nodal joints in the form of a half-

plane and wedges soldered to it occur often. Below we 

discuss some of the typical geometric configurations of 

such joint for which the analytic solutions of their 

characteristic equations are written. 

A widespread case of such a system is a composite 

composed of a half-plane and quarters attached to it 

(wedges with an apical angle 2 ). In such a system, the 

slit (cracks) can reach the materials interface at right 

angles (Fig. 2a), or be located between the half-plane and 

one of the quarters (Fig. 2b). 

  

а b 

Fig. 2. The half-plane and quarters attached to it 
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To construct the characteristic equations for such 

systems we assume in (9) – (13) 
1 2  , 

2 3 2  , 

3 2   for a slit that reach the half-plane at right angle 

(Fig. 2 a) and 
1  , 

2 3 2  , 
3 2   for a slit that 

is located between the half-plane and one of the quarters 

(Fig. 2 b). After a series of algebraic transformations, we 

obtain the following characteristic equations and their 

analytical solutions: 

for the first boundary-value problem –  

   cos sin 0p b p a p   , (14) 

 p k , 1 arccos 2
a

p k
b

    , k Z ; 

for the second boundary-value problem –  

   cos sin 0b p a p   , (15) 

 p k , 1 arccos 2
a

p k
b

   
    

 
, k Z ; 

for a mixed boundary-value problem (case а) –  

 2( cos cos ) 0p A p B p C    , (16) 

 0p  , 
2

1 4
arccos 2

2

b b ac
p k

a
    

   , k Z . 

Here 2

1 3 2a     ,   1 2 2 3b       , 

  1 2 2 3A       ,  2 1 3B     , 2

2 1 3C       

in the case of a slit reaching the half-plane at right angle 

(Fig. 2 a) and  1 3 2a     ,   1 2 2 3b       , 

  1 2 2 3A       ,  1 2 3B     ,  2 2 3C       

in the case of a slit located between the half-plane and the 

quarter (Fig. 2 b). 

For a continuous composite composed of a half-plane 

and quarters soldered to it, the characteristic equation and 

its solutions are of the form: 

  2sin cos 0
2

p
p b p a


   , (17) 

 2p k , 
1

arccos 2
a

p k
b

   , k Z , 

where:    
2 2

2 1 3 3 1 2a           , 

   1 2 1 3 2 3b          . 

We note that the solution of the characteristic 

equation for a mixed boundary-value problem (16) admits 

the presence of complex roots. 

Interesting from an engineering point of view is a 

case when the slit (interfacial crack) reaches a half-

plane at an angle / 4  (Fig. 3). In this case, you should 

take in (9) – (13) 
1 4  , 2 5 4  , 

3 2  .  

 
Fig. 3. The slit reaches a half-plane at an angle / 4  

Thus, the characteristic equations for determining the 

order of the stresses singularity, depending on the 

boundary conditions, have the following form: 

for the first boundary-value problem –  

 3 2sin cos cos cos 0
2 2 2 2

p p p p
p a b c d

    
    

 
, (18) 

where:   1 2 2 34a       , 

  1 2 2 32b        , 

   2 2 3 1 2 33 3c           , 2

1 3 2d     ; 

for the second boundary-value problem –  

 3 2sin cos cos cos 0
2 2 2 2

p p p p
a b c d

    
    

 
, (19) 

where:   1 2 2 34a       , 

  1 2 2 32b       , 

   2 2 3 1 2 33 3c           ,  2

1 3 2d      ; 

for a mixed boundary-value problem (case а) –  

 

4 3

2

cos cos
2 2

cos cos 0,
2 2

p p
p A B

p p
C D E

 

 


 




   



 (20) 

where:   1 2 2 38A       , 

  1 2 2 34B       , 

   2 2 3 1 2 32 5 3 3 5C             , 

   2 2 3 1 2 32 2 2 2D          , 2

2 1 3E     ; 

for a continuous composite body –  

 

4 3

2

cos cos
2 2

cos cos 0,
2 2

p p
p A B

p p
C D E

 

 


 




   



 (21) 

where:    1 2 1 3 2 38A           ,  

   1 2 1 3 2 34B          , 

     1 3 2 2 3 1 2 32 5 3 3 5C               , 

     3 1 2 2 3 1 2 32 2 2D               ,

   
2 2

3 1 2 1 2 32E           
 

. 

Writing an analytic solution of characteristic 

equations (18) – (21) requires the solution of algebraic 

equations of the third and fourth degree. Therefore, we do 

not record the general form of the analytical solution, but 

just note the possibility of its construction. 

A multi wedge system, composed of a half-plane, 

to which two wedges with apical angles / 4  are 

connected (Fig. 4), is considered. Having taken in (9) - 

(12) 1 / 4  , 2  , 3 / 4   we obtain the 

corresponding characteristic equations for each case of 

boundary conditions. 
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Fig. 4. The half-plane, to which two wedges with apical 

angles / 4  are connected 

In the case of the first and second boundary-value 

problems, the characteristic equations and their solutions, 

respectively, are of such form: 

 2sin cos cos 0,
2 2 2

p p p
p a b c

   
   

 
 (22) 

 2p k , 
22 4

arccos 4
2

b b ac
p k

a

 
   , k Z ; 

 2sin cos cos 0,
2 2 2

p p p
p a b c

   
   

 
 (23) 

 
22 4

arccos 4
2

b b ac
p k

a


   , k Z , 

where:   1 2 2 32a       , 2

2 1 3-b    , 

 2 1 3-c     . 

In the case of a mixed problem (case a), the 

characteristic equation (11) will read: 

 
3 2cos cos cos 0

2 2 2

p p p
p A B C D

   
    

 
, (24) 

where:   1 2 2 32A       ,  2 1 32B     , 

   2 2 3 1 2 32 2C             ,  2 1 3D      . 

In the case of a mixed problem finding the solutions 

of the characteristic equation (24) requires solution of the 

third degree equation. Therefore, we will omit in this case 

the recording of the general form of solution, noting only 

that it exists and can be found analytically. 

2. MULTI-WEDGE COMPOSITES COMPOSED OF 

WEDGES WITH IDENTICAL APICAL ANGLES 

When modeling the multi-wedge composites, 

composed of wedges with identical apical angles ( i   , 

i i  , 1,i n ), are often used. Such systems are used 

in particular in modeling the inserts of functionally graded 

materials, whose elastic properties change in a transverse 

direction [7, 8, 16]. In this paper we consider the systems 

with a small number of wedges ( 4n  ), which often 

occur in elements of various types of machines and 

structures (Fig. 5). 

  
a b 

Fig. 5. The multi-wedge composites composed of wedges 

with identical apical angles 

For three-wedge system, the substitution in (9) - 

(13) the values of apical angles and the coordinates of 

connection lines (Fig. 5 a) will yield the following 

characteristic equations and their solutions: 

for the first boundary-value problem of elasticity theory – 

  cos2 sin 0p b p a p   , (25) 

 1

1

1
arccos 2

2

a
p k

b




  
  




 
, 

k
p 




, k Z ; 

for the second boundary-value problem –  

  2 cos2 sin 0a b p p   , (26) 

 
1

arccos 2
2

с
kp

b

 
 








, 

k
p 




, k Z ; 

for a mixed boundary-value problem (case а) –  

  3cos2 cos 0,p b p a p   (27) 

3

1

1
arccos 2

2

a
kp

b








 

 
, 0p  , 

2

k
p  

 

 
, k Z . 

Here    1 3 2 2 2 31a         ,   1 2 2 3b      , 

   2 3 2 1 2 32a         ,    1 2 3 1 2 33a         . 

In the case of a continuous body composed of three 

heterogeneous wedges with apical angles 2 3i   the 

characteristic equation will have the form: 

 
2 2 2 2

sin cos cos
3 3 3

0
p p p

p c
 

   
 

  
,  (28) 

 3
arccos 0,5 1 1 4 3

2
c kp


    
 

  , 3p k , k Z , 

where:    
1

2 1 3 1 2 1 3 2 32c         


      . 

We note that in this case the complex roots of the 

characteristic equation are also possible. 

For a system composed of four heterogeneous 

wedges (Fig. 5 b), based on representations (9) - (13), the 

following equations are obtained: 

for the first boundary-value problem of elasticity theory – 

  1sin 2 cos2 0ap p b p   , (29) 

 1

1 1

1
arccos

2

a k
p

b



 
   , 

2

k
p 




, k Z ; 

for the second boundary-value problem –  

   2sin 2 cos2 0p a b p   ,  (30) 

2

k
p 




, 

1
arccos

2

a k
p

b
  



 
, k Z . 

Here    1 2 2 3 3 4b         ,
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   

   

2 2 4 3 3 4 3

1 2 4 3 3 4 3

1

,

a       

      

      

     
  

 
   

    

2 2 3 3 4 2 3 4

1 3 4 3 2 3 4 .

a      

 



 

      

      
 

For a mixed boundary-value problem (case a), the 

characteristic equation (11) will read: 

  2cos 2 cos2 0p a p b p c     (31) 

21 4
arccos 2

2 2

b b ac
p k

a

  
   
 
 




, 0p  , k Z . 

Here    1 2 2 3 3 4a          ,  

  2 1 3 2 42b       ,  

 
   

   

1 2 3 4 3 3 4

2 2 4 3 3 3 4 .

c       

      

      

    
 

For a continuous composite body ( 2  ) the 

characteristic equation (11) will read –  

  2 ,sin cos 0
2

p
p b a p


   (32) 

 2p k , 
1

arccos
b

a
, k Z . 

Here     1 2 2 3 1 4 3 4a              , 
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2 2
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
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        
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We note that the systems considered are symmetric in 

their geometric parameters. Thus, the characteristic 

equation for the case of mixed boundary conditions (case 

b) is obtained formally by replacing the displacement 

modulus in the characteristic equation for case a 
i  by 

i , where 
1i n i   

   1,i n . 

CONCLUSIONS 

The results above were obtained on the basis of 

expressions (4) - (8), the legitimacy of their using to 

determine the order of stresses singularity is substantiated 

in the works [9, 10]. Thus, a series of multi-wedge systems, 

for which it is possible to construct analytical solutions of 

the corresponding characteristic equations, is determined. 

The paper presents the expressions of analytical 

solutions of characteristic equations only for some 

systems in which the number of elements does not exceed 

4n  , as those that are most commonly found in 

engineering. In particular, the analytical expressions that 

allow to determine the order of the stresses singularity in 

the vicinity of the tip of a slit (crack), reaching at right 

angles and at an angle 4  the linear materials interface 

are given. Additional studies, the results of which are not 

presented here, suggest that the analytical solutions exist 

for other systems, in particular for systems composed of 

wedges with identical apical angles with more elements. 

The analytical determination of the complete set of 

the roots of the characteristic equation leads to 

construction on the basis of representations (1) - (3) the 

expressions for stress and displacement fields in a multi-

system system not limiting only by the vicinity of the 

wedges convergence point. In addition, the use of 

analytical solutions of characteristic equations in the 

systems with a large number of wedges, having the 

identical apical angles, opens wide possibilities for 

researching the materials with angular gradientness [7, 8]. 
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