PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer simulation of chemical coagulation and sedimentation of suspended solids

Identyfikatory
Warianty tytułu
PL
Symulacja komputerowa koagulacji i sedymentacji zawiesiny
Języki publikacji
EN
Abstrakty
EN
The computer program ZB2 was used to study simulated coagulation rate for the system containing spherical sol particles and spherical coagulant particles. The system performance was verified to the particle-cluster model of a fast and perikinetic coagulation process that fulfils Smoluchowski and/or Muller equations. The rate of the coagulation process satisfied both the kinetic equation of a first-order reaction and a second-order reaction. However, chosen concepts and models in the theory of bidispersive sol coagulation have been negatively verified. Also, attempts have been made to modify the Muller integral equation for selected boundary conditions.
Rocznik
Strony
123--131
Opis fizyczny
Bibliogr. 18 poz., wykr., tab.
Twórcy
  • Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury, pl. Łódzki 4, 10-957 Olsztyn, Poland, phone +48 89 523 37 38, fax +48 89 532 48 01
  • Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury, pl. Łódzki 4, 10-957 Olsztyn, Poland, phone +48 89 523 37 38, fax +48 89 532 48 01
  • Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury, pl. Łódzki 4, 10-957 Olsztyn, Poland, phone +48 89 523 37 38, fax +48 89 532 48 01
Bibliografia
  • [1] Lee DG, Bonner JS, Garton LS, Ernest AN, Autenrieth RL. Modelling coagulation kinetics incorporating fractal theories: comparisoson with obserwed data. Water Res. 2002;36:1056-1066. DOI: 10.1016/S0043-1354(01)00281-0.
  • [2] Kovalchuk N, Starov V, Langston P, Hilal N. Reversible coagulation of colloidal suspension in shallow potential wells: direct numerical simulation. Colloid J. 2009;71:503-513. DOI: 10.1134/S1061933X09040127.
  • [3] Li XY, Zhang JJ. Numerical simulation and experimental verification of particle coagulation dynamics for a pulsed input. J Colloid Interf Sci. 2003;262:149-161. DOI: 10.1016/S0021-9797(03)00194-2.
  • [4] Karpov SV, Semina P. On coagulation of polydisperse metal nanocolloids and conditions for applicability of the Muller-Smoluchowski theory. Colloid J. 2012;74:295-304. DOI: 10.1134/S1061933X12030040.
  • [5] Quispe F, Concha P, Toledo G. Discrete sedimentation model for ideal suspensions. Chem Eng J. 2000;80:135-140. DOI: 10.1016/S1383-5866(00)00082-4.
  • [6] Amuda OS, Amoo IA. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J Hazard Mater. 2007;141:778-783. DOI: 10.1016j.jhazmat.2006.07.044.
  • [7] Ratnaweera H, Gjessing E, Oug E. Influence of physical-chemical characteristics of natural organic matter (NOM) on coagulation properties: An analysis of eigth Norwegian water sources. Water Sci Technol. 1999;40:89-95. DOI: 10.1016/S0273-1223(99)00644-7.
  • [8] Duan J, Gregory J. Coagulation by hydrolyzing metal salts. J Colloid Interf Sci. 2003;100:475-502. DOI: 10.1016/S0001-8686(02)00067-2.
  • [9] Holt PK, Barton GW, Wark M, Mitchell C. A quantitative comparison between chemical dosing and electrocoagulation. Colloid Surface. 2002;211:233-248. DOI: 10.1016/S0927-77(02)00285-6.
  • [10] Jiang JQ, Lloyd B. Progress in the development and use of ferrate VI salt as an oxidant and coagulant for water and wastewater treatment. Water Res. 2002;36(6):1397-1408. DOI: 10.1016/S0043-1354(01)00358-X.
  • [11] Den W, Huang C, Ke HC. A mechanistic study on the electrocoagulation of silica nanoparticles from polishing wastewater. Water Practice Technol. 2006;1(3):1-8. DOI: 10.2166/wpt.2006.049.
  • [12] Hong RY, Feng B, Ren ZQ, Xu B, Li H, Zheng ZY, et al. Dynamic and experimental analyses of silica nanoparticles synthesis in diffusion flame. Can J Chem Eng. 2009;87:143-156. DOI: 10.1002/cjce.20137.
  • [13] Smoczynski L, Mroz P, Wardzynska R, Zaleska-Chrost B, Dluzynska K. Computer simulation of the flocculation of suspended solids. Chem Eng J. 2009;152:146-150. DOI: 10.1016/j.cej2009.04.020.
  • [14] Ratnaweera H, Lei L, Lindholm O. Simulation program from wastewater coagulation. Water Sci Technol. 2002;46:27-33.
  • [15] Smoczynski L, Wardzynska R, Pierozynski B. Computer simulation of the polydyspersive sol coagulation process. Can J Chem Eng. 2013;91:302-310. DOI: 10.1002/cjce.21644.
  • [16] Schmid HJS, Tejwani Ch, Peukert W. Monte Carlo simulation of aggregate morphology for simultaneous coagulation and sintering. J Nanopart Res. 2004;6:613-626. DOI: 10.1007/S11051-004-2161-X.
  • [17] Smoluchowski M. Versuch einer Mathematischen Theorie der Koagulations-kinetic Kolloider Lsungen (Attempt of a mathematical theory of coagulation kinetic colloid solutions). Z Phys Chem. 1917;92:129-168. http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/13699.
  • [18] Müller H. Zur Allgemeinen Teorie der Raschen Koagulation (The general theory of rapid coagulation). Kolloid-Beih. 1928;27:223-250.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4017a9a-a121-4ee8-914f-d13a25e36708
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.