Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Learning resources are massive, heterogeneous, and constantly changing. How to find the required resources quickly and accurately has become a very challenging work in the management and sharing of learning resources. According to the characteristics of learning resources, this paper proposes a progressive learning resource description model, which can describe dynamic heterogeneous resource information on a fine-grained level by using information extraction technology, then a semantic annotation algorithm is defined to calculate the semantic of learning resource and add these semantic to the description model. Moreover, a semantic search method is proposed to find the required resources, which calculate the content with the highest similarity to the user query, and then return the results in descending order of similarity. The simulation results show that the method is feasible and effective.
Rocznik
Tom
Strony
art. no. e139434
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University, Nanning 530001, People’s Republic of China
autor
- Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University, Nanning 530001, People’s Republic of China
autor
- Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University, Nanning 530001, People’s Republic of China
Bibliografia
- [1] K. Mahmood, M. Rahmah, M. Ahmed, M.A. Raza, “Semantic Information Retrieval Systems Costing in Big Data Environment,” in Recent Advances on Soft Comput., and Data Mining SCDM), 2020, pp. 192–201, doi: 10.1007/978-3-030-36056-6_19.
- [2] IMS, “IMS Common Caartridge Profile v1.0,” [Online]. Available: http://www.imsglobal.org/cc/ccv1p0/imscc_profilev1p0.html#0_pgfId-1752945 [Accessed: 1. Oct. 2008].
- [3] LTSC (Learning Technology Standards Committee). “Draft standard for learning object metadata,” USA IEEE standard 1484.12.1, July 15, 2002.
- [4] S. Riley, L.K. Soh, and A. Samal, “On the Importance of Metadata and Learner Interaction Data in SCORM 2.0,” LETSI SCORM 2.0 White papers, 2008. [Online]. Available: https://21w98o3yqgi738kmv7xrf9lj-wpengine.netdna-ssl.com/wp-content/assets/LETSI-white-papers/LETSI%20White%20Papers%20-%20Riley%20-%20 Importance%20of%20Metadata.pdf
- [5] S. Yu, X. Yang, G. Cheng, and M. Wang, “From learning object to learning cell: A resource organization model for ubiquitous learning,” J. Educ. Technol. Soc., vol. 18, no. 2, pp. 206–224, 2015.
- [6] M. Chen, S.Q. Yu, and F.K. Chiang, “A dynamic ubiquitous learning resource model with context and its effects on ubiquitous learning,” Interact. Learn. Environ., vol. 25, no. 1, pp. 127–141, 2016, doi: 10.1080/10494820.2016.1143846.
- [7] J. Jensen, “A systematic literature review of the use of semantic web technologies in formal education,” Br. J. Educ. Technol., vol. 50, no. 2, pp. 505–517, 2019, doi: 10.1111/bjet.12570.
- [8] R. Welch, N. Taylor, and M. Gard, “Environmental attunement in the health and physical education canon: emplaced connection to embodiment, community and ‘nature’,” Sport Educ. Soc., vol. 26, no. 4, pp. 349–362, 2021, doi: 10.1080/13573322.2021.1890572.
- [9] M. L. Sein-Echaluce, Á. Fidalgo-Blanco, and J. Esteban-Escaño, “Technological ecosystems and ontologies for an educational model based on Web 3.0,” Univ. Access Inf. Soc., vol. 18, no. 3, pp. 645–658, 2019, doi: 10.1007/s10209-019-00684-9.
- [10] O. Palombi et al., “OntoSIDES: Ontology-based student progress monitoring on the national evaluation system of French Medical Schools,” Artif. Intell. Med., vol. 96, pp. 59–67, 2019, doi: 10.1016/j.artmed.2019.03.006.
- [11] D. A. Koutsomitropoulos and G. D. Solomou, “A learning object ontology repository to support annotation and discovery of educational resources using semantic thesauri,” IFLA J., vol. 44, no. 1, pp. 4–22, 2018, doi: 10.1177/0340035217737559.
- [12] S. Cerón-Figueroa et al., “Instance-based ontology matching for e-learning material using an associative pattern classifier,” Comput. Hum. Behav., vol. 69, pp. 218–225, 2016, doi: 10.1016/j.chb.2016.12.039.
- [13] I. Vagliano and S. Nazir, “Recommending multimedia educational resources on the MOVING platform,” Proceedings of the 8th Workshop on Bibliometric-enhanced Information Retrieval, 2019, pp. 148–158.
- [14] C. Kumar and R. Santhosh, “Effective information retrieval and feature minimization technique for semantic web data,” Comput. Electr. Eng., vol. 81, pp. 1–14, 2020, doi: 10.1016/j.compeleceng.2019.106518.
- [15] G. Kaya and A. Altun, “Educational ontology development,” in Encyclopedia of Information Scienceand Technology, M. Khosrow-Pour, D.B.A. (Ed.), Hershey: IGI Global, 2018, pp. 26–37, doi: 10.4018/978-1-5225-2255-3.ch124.
- [16] B. K. Daniel, “Big Data and data science: A critical review of issues for educational research,” Br. J. Educ. Technol., vol. 50, no. 1, pp. 101–113, 2019, doi: 10.1111/bjet.12595.
- [17] T. Venetis, G. Stoilos and G. Stamou, “Query extensions and incremental query rewriting for OWL 2 QL ontologies,” J. Data Semant., vol. 3, no. 1, pp. 1–23, 2014, doi: 10.1007/s13740-012-0017-6.
- [18] J. Shin, S. Wu, F. Wang, Ch. De Sa, C. Zhang, and Ch. Ré, “Incremental knowledge base construction using deepdive,” Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, vol. 8, no. 11, pp. 1310–1321, 2015, doi: 10.14778/2809974.2809991.
- [19] Y. L. Kang, F. Li, and L. Wang, “Incremental Optimization Method for Periodic Query in Data Warehouse,” J. Software, vol. 28, no. 8, pp. 2126–2147, 2017, doi: 10.13328/j.cnki.jos.005107.
- [20] Z. Tang, M. He, L. Yang, and Z. Fu, “i2Graph: An Incremental Iterative Computation Model for Large Scale Dynamic Graphs,” 2019 IEEE International Conference on Parallel & Distributed Processing with Applications, 2019, vol. 1, pp. 654–659, doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00099.
- [21] M. Franklin, A. Halevy, and D. Maier, “From databases to dataspaces: a new abstraction for information management,” ACM SIGMOD Rec., vol. 34, no. 4, pp. 27–33, 2005, doi: 10.1145/1107499.1107502.
- [22] M. A. Salles, J.-P Dittrich, S. K. Karakashian, O. R. Girard, L. Blunschi, “iTrails: Pay-as-you-go Information Integration in Dataspaces,” Proceedings of the 33rd International Conference on Very Large Data Bases, 2007, pp. 663–674.
- [23] H. A. Mahmoud and A. Aboulnaga, “Schema clustering and retrieval for multi-domain pay-as-you-go data integration systems,” Proceedings of ACM SIGMOD International Conference on Management of Data, 2010, pp. 411–422, doi: 10.1145/1807167.1807213.
- [24] K. Belhajjame et al., “Incrementally improving dataspaces based on user feedback,” Inf. Syst., vol. 38, no. 5, pp. 656–687, 2013, doi: 10.1016/j.is.2013.01.006.
- [25] T. T. Yuan and Z. Zhang, “Merchandise recommendation for retail events with word embedding weighted Tf-idf and dynamic query expansion,” The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018, pp. 1347–1348, doi: 10.1145/3209978.3210202.
- [26] J. F. Sequeda, W. J. Briggs, D. P. Miranker, and W. P. Heideman, “A Pay-as-you-go Methodology to Design and Build Enterprise Knowledge Graphs from Relational Databases,” International Semantic Web Conference, 2019, pp. 526–545, doi: 10.1007/978-3-030-30796-7_32.
- [27] E. Curry, W. Derguech, S. Hasan, Ch. Kouroupetroglou, U. ul Hassan, “A real-time linked dataspace for the internet of things: enabling “pay-as-you-go” data management in smart environments,” Future Gener. Comput. Syst., vol. 90, pp. 405–422, 2019, doi: 10.1016/J.FUTURE.2018.07.019.
- [28] Y. Zhou, Y. Nenov, B. Cuenca Grau, and I. Horrocks, “Pay-As-You-Go OWL Query Answering Using a Triple Store,” Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014, pp. 1142–1148.
- [29] Y. Zhou et al., “PAGOdA: Pay-As-You-Go Ontology Query Answering Using a Datalog Reasoner,” J: Artif. Intell. Res., vol. 54, no. 1, pp. 309–367, 2015, doi: 10.1613/jair.4757.
- [30] L. Zhang, Y. Xie, L. Xidao, and X. Zhang, “Multi-source heterogeneous data fusion,” International Conference on Artificial Intelligence and Big Data (ICAIBD), 2018, pp. 47–51, doi: 10.1109/ICAIBD.2018.8396165.
- [31] C. Hu, Y. Li, X. Cheng, Z. Liu, “A virtual dataspaces model for large-scale materials scientific data access,” Future Gener. Comput. Syst., vol. 54, pp. 456–468, 2016, doi: 10.1016/j.future.2015.05.004.
- [32] A. Kiran and A. Rehan, “Limitations of information extraction methods and techniques for heterogeneous unstructured big data,” Int. J. Eng. Bus. Manage., vol. 11, pp. 1–23, 2019, doi: 10.1177/1847979019890771.
- [33] T. Sakouhi and J. Akaichi, “Dynamic and multi-source semantic annotation of raw mobility data using geographic and social media data,” Pervasive Mob. Comput., vol. 71, 2021, doi: 10.1016/j.pmcj.2020.101310.
- [34] I. Isa, L. Mark, and K. Ioannis, “A deep semantic search method for random tweets,” Online Social Networks Media, vol. 13, pp. 1–13, 2019, doi: 10.1016/j.osnem.2019.07.002.
- [35] S. Vlad and E. Martin, “Detecting Singleton Review Spammers Using Semantic Similarity,” WWW’ 15 Companion: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 971–976, doi: 10.1145/2740908.2742570.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3feb820-aef3-48f2-97cd-7e009d103dfc