PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of momentum transfer processes in a mechanically agitated air – biophase – liquid system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of numerical computations concerning momentum transfer processes in an air – biophase – liquid system agitated in a bioreactor equipped with baffles and a Smith turbine (CD 6 impeller) are presented in this paper. The effect of sucrose concentration on the distributions of the velocity of the continuous phase, gas hold-up and the size of gas bubbles in the system was analysed. Simulation results were presented in the form of the contours of the analysed magnitudes. The effect of sucrose concentration on the averaged values (i.e. determined on the basis of local values) of gas hold-up and gas bubbles size was evaluated. The results of the numerical computations of gas hold-up were compared with our own experimental data.
Rocznik
Strony
465--475
Opis fizyczny
Bibliogr. 29 poz., tab., rys.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. ANSYS CFX-Solver Theory Guide, Release 15.0, ANSYS, Inc, November 2013.
  • 2. Bakker A., The Online CFM Book 2000. Available at: www.bakker.org/cfm.
  • 3. Bielka I., Cudak M., Karcz J., 2014. Local heat transfer process for a gas-liquid system in a wall region of an agitated vessel equipped with the system of CD6-RT impellers. Ind. Eng. Chem. Res., 53, 42, 16539-16549. DOI: 10.1021/ie503003t.
  • 4. Chung T.J., 2002. Computational Fluid Dynamics. Cambridge Univ. Press.
  • 5. Cudak M., 2011. Process characteristics for the mechanically agitated gas-liquid systems in the turbulent fluid flow. Przem. Chem., 90, 9, 1000-1004 (in Polish).
  • 6. Cudak M., 2014. Hydrodynamic characteristics of mechanically agitated air – aqueous sucrose solutions. Chem. Process Eng., 35, 1, 97-107. DOI: 10.2478/cpe-2014-0007.
  • 7. Devi T.T., Kumar B., 2013. Comparison of flow patterns of dual Rushton and CD-6 impellers. Theor. Found. Chem. Eng., 47, 4, 344-355. DOI: 10.1134/S0040570513040210.
  • 8. Devi T.T., Kumar B., 2011. Analyzing flow hydrodynamics in stirred tank with CD-6 and Rushton impeller. Int. Rev. Chem. Eng., 3, 1, 440-448.
  • 9. Frijlink J.J., 1987. Roerders in begaste Suspensions. i2 – Prozesstechnologie, 9, 47-51.
  • 10. Gimbun J., Rielly C.D., Nagy Z.K., 2009. Modelling of mass transfer in gas-liquid stirred tanks agitated by Rushton turbine and CD 6 impeller: A scale-up study. Chem. Eng. Res. Des., 87, 437-451. DOI: 10.1016/j.cherd.2008.12.017.
  • 11. Junker H.J., Mann Z., Hunt G., 2000. Retrofit of CD-6 (Smith) impeller in fermentation vessels. Appl. Biochem. Biotechnol., 89, 1, 67-83. DOI: 10.1385/ABAB:89:1:6.
  • 12. Karcz J., Kamińska-Brzoska J., 1994. Experimental studies of the influence of the blade curvature of a disc turbine on power consumption. Inż. Chem. Proc., 15, 3, 371-378.
  • 13. Karcz J., Kamińska-Brzoska J., 1994. Heat transfer in a jacketed stirred tank equipped with baffles and concave disc impeller. 8th European Conference on Mixing, ICHEME Symposium Series, 136, 449-456. Cambridge, 21- 23.09.1994.
  • 14. Karcz J., Kamińska-Borak J., 1997. An effect of stirred tank geometry on heat transfer efficiency – Studies for concave disc turbine. 9th European Conference on Mixing, Recent Progres en Genie des Procedes, 11, 51, 265- 272. Paris 18-21.03. 1997.
  • 15. Khapre A., Munshi B., 2014. Numerical comparison of Rushton turbine and CD-6 impeller in non-Newtonian fluid stirred tank. International Scholarly Scientific Research Innovation, 8, 11, 1260-1267. Available at: scholar.waset.org/1999.2/5555526.
  • 16. Laudner B.E., Spalding J.L., 1974. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng., 3, 269-289. DOI: 10.1016/0045-7825(74)90029-2.
  • 17. Major-Godlewska M., Bitenc M., Karcz J., 2015. Experimental analysis of an effect of the nutrient type and its concentration on the rheological properties of the baker’s yeast suspensions. Polish J. Chem. Technol., 17, 3, 110-117. DOI: 10.515/pjct-2015-0058.
  • 18. Musiał M., Karcz J., Cudak M., 2014. Use of CFD metod for analysis of hydrodynamics in a baffled agitated vessel with CD 6 impeller. Przem. Chem., 93, 9, 1599-1603 (in Polish).
  • 19. Musiał M., Cudak M., Karcz J., 2015. Gas hold-up for gas-liquid-biophase systems in the bioreactor with CD 6 impeller. Inż. i Ap. Chem., 54, 4, 182-183 (in Polish).
  • 20. Ranganathan P., Sivaraman S., 2011. Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics. Chem. Eng. Sci., 66, 3108-312 4. DOI: 10.1016/j.ces.2011.03.007.
  • 21. Rielly C.D., Evans G. M., Davidson J.F., Carpenter K.J., 1992. Effect vessel scale-up on the hydrodynamics of a self-aerating concave blade impeller. Chem. Eng. Sci., 47, 13/14, 3395-3402. DOI: 10.1016/0009- 2509(92)85050-L.
  • 22. Scargiali F., D’Orazio A., Grisafi F., Brucato A., 2007. Modelling and simulation of gas-liquid hydrodynamics in mechanically stirred tanks. Chem. Eng. Res. Des., 85(A5), 637–646. DOI: 10.1205/cherd06243.
  • 23. Sensel M.E., Meyers K.J., Fasano J.B., 1993. Gas dispersion at high aeration rates in low to moderately viscous
  • 24. Newtonian liquids. Process Mixing: Chem. Biochem. App., Part II, AIChE Symp. Ser., 89, 293, 76-81.
  • 25. Singh H., Fletcher D. F., Nijdam J. J., 2011. An assessment of different turbulence models for predicting flow in a baffled tank stirred with a Rushton turbine. Chem. Eng. Sci., 66, 5976-5988. DOI: 10.1016/j.ces.2011.08.018.
  • 26. Smith J.M., Katsanevakis A.N., 1993. Impeller power demand in mechanically agitated boiling systems. Chem. Eng. Res. Des., 71, Part A, 145-152.
  • 27. Van’t Riet K., Boom J.M., Smith J.M., 1976. Power consumption impeller coalescence and recirculation in aerated vessels. Trans. Inst. Chem. Eng., 54, 124-131.
  • 28. Warmoeskerken M.M.C.G., Smith J.M., 1989. The hollow blade agitator for dispersion and mass transfer. Chem. Eng. Res. Des., 67, 193-198.
  • 29. Zhengming G., Yingchen W., Yanmin Z., Litian S., 1991. Study on gas-liquid mass transfer characteristics in an agitated vessel. Part II. The effects of geometric parameters of an agitated tank on the volumetric mass transfer coefficient. 7th European Conference on Mixing, Part II, Brugge, Belgium, 18-20.09.1991, 315-320.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3f0f424-a386-4591-bcb3-bff8b1b50ba9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.