PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and experimental investigation of sliding instability in blocky rock system triggered by external disturbance

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the structural hierarchy theory, rock masses can be considered as a blocky rock system capable of storing various kinds of a large amount of energy. As the development and utilization of underground space has extended to thousands of meters, the increasingly frequent rockbursts pose a great danger to the constructors and equipment at the construction field. According to its mechanism, rockburst can be broadly divided into strain failure type caused by rock volume damage and sliding failure type caused by fault-slip event. This paper focused on investigating the triggering mechanism of sliding type rockbursts induced by external disturbance. With the simplified theoretical model of contact slipping between rock masses under the condition of initial stress, a non-dimensional impact energy parameter I was derived to quantify the critical conditions of different types of sliding failure events along structural plane. Then the necessary conditions for the occurrence of fault-slip rock burst were derived: Firstly, the contact surfaces of the rock block are in the quasi-stable state with the high initial stress in the tangential direction; secondly, the impact energy factor which characterizes the movement of the rock mass reaches a critical value under the dynamic disturbance. To verify the theoretical result, a series of sliding tests were carried out for purple sandstone blocky system under various horizontal pulls and vertical impact loadings. Both the irreversible displacement and sustained sliding instability are observed, and the critical energy conditions of above-mentioned phenomenon are obtained, which are consistent with the theoretical model. Furthermore, numerical modeling calculations considering rock mass vibration and the slip rate weakening mode of rock friction were performed to better understand the mechanism of sliding instability caused by external disturbances. These results provide a theoretical reference on the safety of underground tunnel construction.
Czasopismo
Rocznik
Strony
775--787
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • State Key Laboratory for Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA, Nanjing, China
autor
  • State Key Laboratory for Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA, Nanjing, China
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
Bibliografia
  • 1. Aleksandrova NI, Chernikov AG, Sher EN (2006) On attenuation of pendulum-type waves in a block rock mass. J Min Sci 42:468–475
  • 2. Beeler NM, Tullis TE (1997) The roles of time and displacement in velocity-dependent volumetric strain of faults. J Geophys Res 102:22595–22609
  • 3. Blake W, Hedley DGF (2003) Rockbursts: case studies from North American hard-rock mines, society for mining, metallurgy, and exploration, New York
  • 4. Blanpied ML, Tullis TE, Weeks JD (1998) Effects of slip, slip rate, and shear heating on the friction of granite. J Geophys Res 103:489–511
  • 5. Castro LAM, Carter TG, Lightfoot N (2009) Investigating factors influencing fault-slip in seismically active structures. In 3rd CANUS rock mechanics symposium, Toronto
  • 6. Cook NGW, Hoek E, Pretorius JPG et al (1966) Rock mechanics applied to the study of rockbursts. J S Afr I Min Metallj 66:435–528
  • 7. Goodman RE, Shi GH (1985) Block theory and its application to rock mechanics. Prentice-Hall, New Jersey, pp 98–103
  • 8. Grigoriev AS, Shilko EV, Astafurov SV et al (2016) Effect of dynamic stress state perturbation on irreversible strain accumulation at interfaces in block-structured media. Phys Mesomech 19:136–148
  • 9. Huang RQ, Wang XN (1999) Analysis of dynamic disturbance on rock burst. Bull Eng Geol Environ 57(3):281–284
  • 10. Johnson PA, Jia XP (2005) Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437:871–874
  • 11. Kaiser PK, Tannant DD, McCreath D R (1996) Canadian rockburst support handbook. Geomechanics Research Centre, Laurentian University, Sudbury, Ontario
  • 12. Kurlenya MV, Oparin VN, Eremenko AA (1993) Relation of linear block dimensions of rock to crack opening in the structural hierarchy of masses. J Min Sci 29:197–203
  • 13. Linkov AM (1996) Rockburst and the instability of rock masses. Int J Rock Mech Min Sci Geomech Abstr 33:727–732
  • 14. Liu TT, Li JC, Li HB et al (2017) Experimental study of s-wave propagation through a filled rock joint. Rock Mech Rock Eng 50(10):2645–2657
  • 15. Ma GW, An XM, Wang MY (2009) Analytical study of dynamic friction mechanism in blocky rock systems. Int J Rock Mech Min Sci 46:946–951
  • 16. Mazaira A, Konicek P (2015) Intense rockburst impacts in deep underground construction and their prevention. Can Geotech J 52:150421143936002
  • 17. Meng FZ, Zhou H, Wang ZQ et al (2016) Experimental study of factors affecting fault slip rockbursts in deeply buried hard rock tunnels. Bull Eng Geol Environ 76(3):1167–1182
  • 18. Meng FZ, Wong LNY, Zhou H et al (2019) Shear rate effects on the post-peak shear behaviour and acoustic emission characteristics of artificially split granite joints. Rock Mech Rock Eng 52:1–20
  • 19. Napier JAL (1987) The application of excess shear stress to the design of mine layouts. J S Afr Inst Min Metall 87(12):397–405
  • 20. Ortlepp WD, Stacey TR (1994) Rockburst mechanisms in tunnels and shafts. Tunn Undergr Sp Tech 9:59–65
  • 21. Qi CZ, Chen CS, Qian QH et al (2008) Dynamic instability of tunnel in blocky rock mass. Trans Tianjin Univ 14(6):457–463
  • 22. Qian QH (2014) Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump. Rock Soil Mech 35:1–6
  • 23. Ryder JA (1988) Excess shear stress in the assessment of geologically hazardous situations. J S Afr I Min Metallj 88:27–39
  • 24. Sainoki A, Mitri HS (2014) Dynamic modelling of fault slip with Barton’s shear strength model. Int J Rock Mech Min Sci 67:155–163
  • 25. Salamon MDG (1970) Stability, instability and design of pillar workings. Int J Rock Mech Min Scie Geomech Abstr 7(6):613–631
  • 26. Shilko EV, Astafurov SV, Ruzhich VV et al (2010) On the feasibility of shear stress estimation at interfaces of block-structured medium. Phys Mesomech 13:21–27
  • 27. Spottiswoode SM (1988) Total seismicity, and the application of ESS analysis to mine layouts. J S Afr Inst Min Metall 88(4):109–116
  • 28. Stacey TR (2011) Support of excavations subjected to dynamic (rockburst) loading. In: Proceedings of the 12th international congress of the international society of rock mechanics, pp 137–145
  • 29. Wang MY, Li J, Ma LJ et al (2016) Study on the characteristic energy factor of the deep rock mass under weak disturbance. Rock Mech Rock Eng 49:3165–3173
  • 30. Xia KW, Rosakis AJ, Kanamori H (2004) Laboratory earthquake: the sub-Rayleigh-to-supershear rupture transition. Science 303:1859–1861
  • 31. Xu XF, Dou LM, Lu CP et al (2010) Frequency spectrum analysis on micro-seismic signal of rock bursts induced by dynamic disturbance. Min Sci Tech 20:682–685
  • 32. Yan P, Zhao ZG, Lu WB et al (2015) Mitigation of rock burst events by blasting techniques during deep-tunnel excavation. Eng Geol 188:126–136
  • 33. Zhang CQ, Feng XT, Zhou H et al (2012) Case histories of four extremely intense rockbursts in deep tunnels. Rock Mech Rock Eng 45:275–288
  • 34. Zhou H, Meng FZ, Zhang CQ et al (2015) Analysis of rockburst mechanisms induced by structural planes in deep tunnels. Bull Eng Geol Environ 74:1435–1451
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3ef9450-bfb3-4d44-bc1f-f974ee92646d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.