PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Learning to swim - how operational design parameters determine the grade of autonomy of ships

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, ideas and applications for autonomous shipping have been rapidly increasing. In most of today’s ship bridge systems decision support systems with different capabilities are installed and officers of the watch rely on them. First tests with fully and constrained autonomous ships are on the way. One of them is the B0 | BZERO project, with the aim of an autonomous 8-hour watch-free bridge, while the ship is still manned. The system’s constraints are captured in the operational design domain (ODD) defining all conditions under which the autonomous system can operate safely. We propose the definition of a preliminary ODD considering both regulatory and technical restrictions. Furthermore, we present a new way of defining the level of autonomy of a ship by using the ODD and navigational specifications.
Twórcy
autor
  • Fraunhofer-Center for Maritime Logistics and Services CML, Hamburg, Germany
  • Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Wachtberg, Germany
Bibliografia
  • 1. Abilio Ramos, M., Utne, I.B., Mosleh, A.: Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events. Safety Science. 116, 33–44 (2019). https://doi.org/10.1016/j.ssci.2019.02.038.
  • 2. Colwell, I., Phan, B., Saleem, S., Salay, R., Czarnecki, K.: An Automated Vehicle Safety Concept Based on Runtime Restriction of the Operational Design Domain. In: 2018 IEEE Intelligent Vehicles Symposium (IV). pp. 1910–1917 (2018). https://doi.org/10.1109/IVS.2018.8500530.
  • 3. Farah, H., Bhusari, S., Gent, P. van, Babu, F.A.M., Morsink, P., Happee, R., Arem, B. van: An Empirical Analysis to Assess the Operational Design Domain of Lane Keeping System Equipped Vehicles Combining Objective and Subjective Risk Measures. IEEE Transactions on Intelligent Transportation Systems. 22, 5, 2589–2598 (2021). https://doi.org/10.1109/TITS.2020.2969928.
  • 4. France, W.N., Levadou, M., Treakle, T.W., Paulling, J.R., Michel, R.K., Moore, C.: An Investigation of Head-Sea Parametric Rolling and Its Influence on Container Lashing Systems. Marine Technology and SNAME News. 40, 01, 1–19 (2003). https://doi.org/10.5957/mt1.2003.40.1.1.
  • 5. International Maritime Organization: Autonomous Shipping, https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx, last accessed 2021/03/26.
  • 6. International Maritime Organization: Colregs-international regulations for preventing collisions at sea: Articles of the Convention on the International Regulations for Preventing Collisions at Sea. (1972).
  • 7. Kim, M., Joung, T.-H., Jeong, B., Park, H.-S.: Autonomous shipping and its impact on regulations, technologies, and industries. null. 4, 2, 17–25 (2020). https://doi.org/10.1080/25725084.2020.1779427.
  • 8. Koopman, P., Fratrik, F.: How many operational design domains, objects, and events? Presented at the AAAI Workshop on Artificial Intelligence Safety (2019).
  • 9. Mathes, S., Herberg, J., Berking, B., Behnke, J., Jonas, M.: Functional scope and model of integrated navigation systems - a toolbox for identification and testing. (2001).
  • 10. Meucci, A., Young, I.R., Aarnes, O.J., Breivik, Ø.: Comparison of Wind Speed and Wave Height Trends from Twentieth-Century Models and Satellite Altimeters. Journal of Climate. 33, 2, 611–624 (2020). https://doi.org/10.1175/JCLI-D-19-0540.1.
  • 11. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans. 30, 3, 286–297 (2000). https://doi.org/10.1109/3468.844354.
  • 12. Porathe, T., Hoem, Å., Rødseth, Ø., Fjørtoft, K., Johnsen, S.O.: At least as safe as manned shipping? Autonomous shipping, safety and “human error.” In: Haugen, S., Barros, A., Gulijk, C. van, Kongsvik, T., and Vinnem, J.E. (eds.) Safety and Reliability – Safe Societies in a Changing World. pp. 417–425 CRC Press, London (2018).
  • 13. Rødseth, Ø., Nordahl, H.: Definitions for Autonomous Merchant Ships. (2017). https://doi.org/10.13140/RG.2.2.22209.17760.
  • 14. Rødseth, Ø.J.: Defining Ship Autonomy by Characteristic Factors. In: 19-26. pp. 19–26 SINTEF Academic Press, Busan, Korea (2018).
  • 15. SAE International: J3016B: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, https://www.sae.org/standards/content/j3016_201806/, last accessed 2021/05/10.
  • 16. Zakaria, N.M.G.: Effect of ship size, forward speed and wave direction on relative wave height of container ships in rough seas. The Institution of Engineers. 72, 3, 21–34 (2009).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3ed61e7-7af6-4300-8aaa-f72fc8f75ab3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.