Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators’ matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.
Czasopismo
Rocznik
Tom
Strony
113--126
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wz.
Twórcy
autor
- Bialystok University of Technology, Wiejska 45A, 15-351 Białystok
Bibliografia
- [1] Hausen H.: Über die Theorie des Wärmeaustausches in Regeneratoren. Zeitschrift für angewandte Mathematik und Mechanik 9(1929), 173–200.
- [2] Nusselt W.: Die Theorie des Winderhitzers. Zeitschrift des Vereines deutscher Ingenieure 71(1927), 3, 85–91.
- [3] Willmot A.J.: The regenerative heat exchanger computer representation. Int. J. Heat Mass Trans. 12(1969), 9, 997–1014.
- [4] Bes T.M.: Energiespeichervermögen eines periodisch erwärmten und gekühlten Festkörpers. Bull. De L’Académie Polonaise des Sciences. Serie des Sciences Techniques 17(1969), 1, 5–13.
- [5] Szargut J.: Numerical methods in thermal calculations of industrial furnaces. Silesia Publishers, Katowice 1977.
- [6] Romie F., Baclic B.S.: Methods for rapid calculation of the operation of asymmetric coucterflow regenerators. J Heat Trans-T ASME 110(1988) 785–788.
- [7] Yu J., Zhang M., Fan W., Zhou Y., Zhao G.: Study on performance of the ball packed-bed regenerator: experiments and simulation. Appl. Therm. Eng. 22(2002), 641–651.
- [8] Zarrinehkafsh M.T., Sadrameli S.M.: Simulation of fixed bed regenerative heat exchangers for flue gas heat recovery. Appl. Therm. Eng. 24(2004). 373–382.
- [9] Reboussin Y., Fourmigue J.F., Marty P., Citti O.: A numerical approach for the study of glass furnace regenerators. Appl. Therm. Eng., 25(2005), 2299–320.
- [10] Wołkowycki G.: Experimental results on the fixed matrix regenerator effectiveness for a glass stove furnace. Heat Transfer Eng. 37(2015), 6 , 591–602.
- [11] Sardeshpande V., Anthony R., Gaitonde U.N., Banerjee R.: Performance analysis for glass furnace regenerator. Appl. Energ. 88(2011), 4451–4458.
- [12] Schack A.: Industrial Heat Transfer: Practical and Theoretical with Basic Numerical Examples. John Wily, New York 1965.
- [13] Skiepko T., Shah R.K.: Modeling and effect of leak-ages on heat transfer performance of fixed matrix regenerators. Int. J. Heat Mass Tran. 48 (2005), 1608–1632.
- [14] An American National Standard, ASME PTC 19.1-1998, Test Uncertainty, Instruments and Apparatus. ASME, 1998.
- [15] Lestina T., Scott B.: Assessing the uncertainty of thermal performance measurements of industrial heat exchangers. In: Compact Heat Exchangers for the Process Industries. Proc. Int. Conf. on Compact Heat Exchangers for the Process Industries, held at the Cliff Lodge and Conference Center, Snowbird, Utah, June 22–27, 1997, 401–416.
- [16] Moffat R.J.: Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1(1988), 3–17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3ed4295-645a-4425-93ab-6153aadf30f3