PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Facile Synthesis of 3,3'-Dinitro-5,5'-diamino-bi-1,2,4-triazole and a Study of Its Thermal Decomposition

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
3,3’-Dinitro-5,5’-diamino-bi-1,2,4-triazole (DABNT) was synthesized by a facile method and its crystalline density was determined as 1.839 g·cm−3 at 293(2) K by X-ray diffraction. Its thermal decomposition kinetics and mechanism were studied by means of differential scanning calorimetry-thermogravimetry (DCS-TG), in situ thermolysis by rapid-scan Fourier transform infrared spectroscopy (RSFTIR) and simultaneous TG-IR technology. The results showed that the apparent activation energies obtained by the Kissinger, Ozawa and Starink methods were 122.9 kJ·mol−1, 123.2 kJ·mol−1 and 123.5 kJ·mol−1, respectively. The thermodynamic parameters of ΔS≠, ΔH≠ and ΔG≠ were −37.5 J·K−1·mol−1, 118.4 kJ·mol−1 and 138.7 kJ·mol−1, respectively. The decomposition reaction process of DABNT starts with the transformation from a primary amine to a secondary amine and then the loss of one nitro-group from the DABNT structure. Gaseous products, such as N2O and H2O, were detected from decomposition in the range of 50-300 °C. Density functional theory (DFT) calculations were further employed to illustrate the decomposition mechanism. The above-mentioned information on the synthesis and thermal behaviour is quite useful for the scale-up and evaluation of the thermal safety of DABNT.
Rocznik
Strony
281--295
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mailbox 311-919, Mianyang, Sichuan, 621900 Mianyang, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mailbox 311-919, Mianyang, Sichuan, 621900 Mianyang, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mailbox 311-919, Mianyang, Sichuan, 621900 Mianyang, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mailbox 311-919, Mianyang, Sichuan, 621900 Mianyang, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mailbox 311-919, Mianyang, Sichuan, 621900 Mianyang, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mailbox 311-919, Mianyang, Sichuan, 621900 Mianyang, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mailbox 311-919, Mianyang, Sichuan, 621900 Mianyang, China
Bibliografia
  • [1] Klapötke, T. M. Chemistry of High-Energy Materials. 3nd ed., Berlin, Boston 2015; ISBN 9783110439335.
  • [2] Gao, H.; Shreeve, J. M. Azole-based Energetic Salts. Chem. Rev. 2011, 111: 7377-7436.
  • [3] Bracuti, A. J. Crystal Structure of 4,5-Dinitroimidazole (45DNI). J. Chem. Crystallogr. 1998, 28: 367-371.
  • [4] Zaitsev, A. A.; Dalinger, I. L.; Shevelev, S. A. Dinitropyrazoles. Russ. Chem. Rev. 2009, 78: 589-627.
  • [5] Wang, J.; Dong, H.; Zhang, X.; Zhou, J. H.; Zhang, X. L.; Li, J. S. Synthesis, Thermal Stability and Sensitivity of 2,4-Dinitroimidazole. Chin. J. Energ. Mater. 2010, 18: 728-729.
  • [6] Janssen, J. W. A. M.; Habraken, C. L. Pyrazoles. VIII. Rearrangement of N-nitropyrazoles. The Formation of 3-Nitropyrazoles. J. Org. Chem. 1968, 36: 3081-3084.
  • [7] Hervé, G.; Roussel, C.; Graindorge, H. Selective Preparation of 3,4,5-Trinitro-1H-pyrazole: a Stable All-carbon-nitrated Arene. Angew. Chem. Int. Ed. 2010, 49: 3177-3181.
  • [8] Rahimi-Nasrabadi, M.; Zahedi, M. M.; Pourmortazavi, S. M.; Heydari, R.; Rai, H.; Jazayeri, J.; Javidan, A. Simultaneous Determination of Carbazole-based Explosives in Environmental Waters by Dispersive Liquid-liquid Microextraction Coupled to HPLC with UV-Vis Detection. Microchim. Acta 2012, 177: 145-152.
  • [9] Pourmortazavi, S. M.; Rahimi-Nasrabadi, M.; Rai, H.; Besharati-Seidani, A.; Javidan, A. Role of Metal Oxide Nanomaterials on Thermal Stability of 1,3,6-Trinitrocarbazole. Propellants Explos. Pyrotech. 2016, 41: 912-918.
  • [10] Dippold, A. A.; Klapötke, T. M. Nitrogen-rich Bis-1,2,4-triazoles – a Comparative Study of Structural and Energetic Properties. Chem. Eur. J. 2012, 18: 16742-16753.
  • [11] Dipplold, A. A.; Klapötke, T. M. A Study of Dinitro-bis-1,2,4-triazole-1,1’-diol and Derivatives: Design of High-performance Insensitive Energetic Materials by the Introduction of N-oxides. J. Am. Chem. Soc. 2013, 135: 9931-9938.
  • [12] Kettner, M. A.; Klapötke, T. M. New Energetic Polynitrotetrazoles. Chem. Eur. J. 2015, 21: 3755-3765.
  • [13] Gao, H.; Ye, C.; Gupta, O. D.; Xiao, J. C.; Hiskey, M. A.; Twamley, B.; Shreeve, J. M. 2,4,5-Trinitroimidazole-based Energetic Salts. Chem. Eur. J. 2007, 13: 3853-3860.
  • [14] Zhang, Y.; Guo, Y.; Joo, Y.; Parrish, D. A.; Shreeve, J. M. 3,4,5-Trinitropyrazolebased Energetic Salts. Chem. Eur. J. 2010, 16: 10778-10784.
  • [15] Chavez, D. E.; Parrish, D.; Preston, D. N.; Mares, I. W. Synthesis and Energetic Properties of 4,4’,5,5’-Tetranitro-2,2’-biimidazolate (N4BIM) Salts. Propellants Explos. Pyrotech. 2012, 37: 647-652.
  • [16] Paraskos, A. J., Cooke, E. D., Caflin, K. C., Bishydrazinium and Diammonium Salts of 4,4’,5,5’-Tetranitro-2,2’-biimidazole (TNBI): Synthesis and Properties. Propellants Explos. Pyrotech. 2015, 40: 46-49.
  • [17] Dippold, A. A.; Klapötke, T. M.; Martin, F. A.; Wiedbrauk, S. Nitraminoazoles Based on ANTA – a Comprehensive Study of Structural and Energetic Properties. Eur. J. Inorg. Chem. 2012, 14: 2429-2443.
  • [18] Song, J.; Wang, K.; Liang, L.; Bian, C.; Zhou, Z. High-energy-density Materials Based on 1-Nitramino-2,4-dinitroimidazole. RSC Adv. 2013, 3: 10859-10866.
  • [19] Zhang, Y.; Parrish, D. A.; Shreeve, J. M. 4-Nitramino-3,5-dinitropyrazole-based Energetic Salts. Chem. Eur. J. 2012, 18: 987-994.
  • [20] Yin, P.; Shreeve, J. M. From N-nitro to N-nitroamino: Preparation of Highperformance Energetic Materials by Introducing Nitrogen-containing Ions. Angew. Chem. Int. Ed. 2015, 54: 14513-14517.
  • [21] Yin, P.; Parrish, D. A.; Shreeve, J. M. Energetic Multifunctionalized Nitraminopyrazoles and Their Ionic Derivatives: Ternary Hydrogen-bond Induced High Energy Density Materials. J. Am. Chem. Soc. 2015, 137: 4778-4786.
  • [22] Duddu, R.; Dave, P. R.; Damavarapu, R.; Gelber, N.; Parrish, D. Synthesis of N-amino- and N-nitramino-nitroimidazoles. Tetrahedron Lett. 2010, 51: 399-401.
  • [23] Breiner, M. M.; Chavez, D. E.; Parrish, D. A. Nucleophilic Reactions of the Bis Ammonium Salt of 4,4’,5,5’-Tetranitro-2,2’-biimidazole. Synlett 2013, 24: 519-521.
  • [24] Jing, M.; Shu, Y.; Wang, J.; Ma, Q.; Zhang, X.; Huang, Y. Synthesis, Crystal Structure and Thermal Property of 1-Amino-2,4-dinitroimidazole. Chin. J. Energ. Mater. 2014, 22: 454-457.
  • [25] Jiang, T.; Zhang, X.; Jing, M.; Shu, Y.; Wang, J. Synthesis, Crystal Structure and Thermal Property of 1-Amino-3,5-dinitropyrazole. Chin. J. Energ. Mater. 2014, 22: 654-657.
  • [26] Yin, P.; Zhang, J.; He, C.; Parrish, D. A.; Shreeve, J. M. Polynitro-substituted Pyrazoles and Triazoles as Potential Energetic Materials and Oxidizers. J. Mater. Chem. A 2014, 3: 3200-3208.
  • [27] Chavez, D. E.; Bottaro, J. C.; Petrie, M.; Parrish, D. A. Synthesis and Thermal Behavior of a Fused, Tricyclic 1,2,3,4-Tetrazine Ring System. Angew. Chem. Int. Ed. 2015, 54: 12973-12975.
  • [28] Yin, P.; Shreeve, J. M. From N-nitro to N-nitroamino: Preparation of Highperformance Energetic Materials by Introducing Nitrogen-containing Ions. Angew. Chem. Int. Ed. 2015, 54: 14513-14517.
  • [29] Szala, M.; Lewczuk, R. New Synthetic Methods for 4,4’,5,5’-Tetranitro-2,2’-bi-1H-imidazole (TNBI). Cent. Eur. J. Energ. Mater. 2015, 12: 261-270.
  • [30] Shamsipur, M.; Pourmortazavi, S. M.; Hajimirsadeghi, S. S.; Atifeh, S. M. Fuel 2012, 95: 394-399.
  • [31] Tamura, Y.; Minamikawa, J.; Sumoto, K.; Fujii, S.; Ikeda, M. Synthesis and Some Properties of O-acyl- and O-nitrophenylhydroxylamines. J. Org. Chem. 1973, 38: 1239-1241.
  • [32] Ma, Q.; Wang, J.; Zhang, X.; Shu, Y. Synthesis and Performance of 2,4,6-Trimethylbenzenesulfonic Hydroxylamine. Chin. J. Energ. Mater. 2013, 21: 133-134.
  • [33] Sheldrick, G. M. SHELXS 97, University of Göttingen, Germany 1990.
  • [34] Sheldrick, G. M. SHELXL 97, University of Göttingen, Germany 1997.
  • [35] Liu, Y.; Jiang, Y. T.; Zhang, T. L.; Feng, C. G.; Yang, L. Thermal Kinetic Performance and Storage Life Analysis of a Series of High-Energy and Green Energetic Materials. J. Therm. Anal. Calorim. 2015, 119: 659-670.
  • [36] Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29: 1702-1706.
  • [37] Ozawa, T. A New Method of Analyzing Thermogravimetric Data. B. Chem. Soc. Jap. 1957, 38: 1881-1886.
  • [38] Boswell, P. G. Calculation of Activation Energies Using a Modified Kissinger Method. J. Therm. Anal. Calorim. 1980, 18: 353-356.
  • [39] McNaught, A. D., Wilkinson, A. Compendium of Chemical Terminology. 2nd ed., Cambridge, UK 1997; ISBN 0865426848.
  • [40] Yan, Q.; Zeman, S. Theoretical Evaluation of Sensitivity and Thermal Stability for High Explosives Based on Quantum Chemistry Methods: a Brief Review. Int. J. Quant. Chem. 2013, 113: 1-14.
  • [41] Jing, S.; Liu, Y.; Liu, D.; Guo, J. Synthesis and Theoretical Studies of a New High Explosive, N,N,-Bis(3-aminofurazan-4-yl)-4,4’-diamino-2,2’,3,3’,5,5’,6,6’- octanitroazobenzene. Cent. Eur. J. Energ. Mater. 2015, 12: 745-755.
  • [42] Ma, Q.; Jiang, T.; Zhang, X.; Fan, G.; Wang, J.; Huang, J. Theoretical Investigations on 4,4’,5,5’-Tetranitro-2,2’-1H,1’H-2,2’-biimidazole Derivatives as Potential Nitrogen-rich High Energy Materials. J. Phys. Org. Chem. 2015, 28: 31-39.
  • [43] Ma, Q.; Liao, L. Y.; Cheng, B. B.; Fan, G. J.; Huang, J. L.; Wang, J. Construction of New Insensitive Explosives: Fused N5-Chain N1,N3,N5-(1,2,3,4-tetrazole-5-nitro)-1,3,5-triamino-2,4,6-trinitrobenzene Derivatives. Polycyc. Aromat. Comp. 2016, 36: 639-655.
  • [44] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth G. A.;, Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J., Fox, D. J. GAUSSIAN 09 (Revision D.01): Gaussian, Inc, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3ebbcb2-0a2a-494a-9064-61ae437df534
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.