PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temper Bead Welding of S420G2+M Steel in Water Environment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the idea of the use of Temper Bead Welding (TBW) technique to improve the weldability of high strength steel at underwater wet welding conditions. Wet welding method with the use of covered electrodes is described. This work shows results of metallographic examinations and hardness measurements of samples of S420G2+M steel with weld beads performed under water. It has been shown that Temper Bead Welding technique may provide a way to reduce the hardness of the welds, thus is a useful method for improving weldability of high strength steel welded in underwater conditions. The optimum overlap of weld beads (pitch) was set of 55÷100%.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Rowe M., Liu S., Recent developments in underwater wet welding. Science and Technology of Welding and Joining. 6(6) (2001), 387-396.
  • 2. Rogalski G., Łabanowski J., Fydrych D., Tomków J., Bead-on-plate welding on S235JR steel by underwater local dry chamber process. Polish Maritime Research. 21(2) (2014), 58-64.
  • 3. Fydrych D., Świerczyńska A., Rogalski G., Effect of underwater wet welding conditions on the diffusible hydrogen content in deposited metal. Metallurgia Italiana. 11/12 (2015), 47-52.
  • 4. Di X., Ji S., Cheng F., Wang D., Cao J.: Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding. Materials & Design. 88 (2015), 505-513.
  • 5. Zhang Y., Jia C., Zhao B., Hu J., Wu C., Heat input and metal transfer influences on the weld geometry and microstructure during underwater wet FCAW. Journal of Materials Processing Technology. 238 (2016), 373-382.
  • 6. Guo N., Xing X., Zhao H., Tan C., Feng J., Deng Z., Effect of water depth on weld quality and welding process in underwater fiber laser welding. Materials & Design. 115 (2017), 112-120.
  • 7. Li H.L., Liu D., Yan Y.T., Guo N., Feng J.C.: Microstructural characteristics and mechanical properties of underwater wet flux-cored wire welded 316L stainless steel joints. Journal of Materials Processing Technology. 238 (2016), 423-430.
  • 8. Pan J., Yang L., Hu S., Chai S., Numerical analysis of thermal cycle characteristics and prediction of microstructure in multi-pass UWW. The International Journal of Advanced Manufacturing Technology. 84(5-8) (2016), 1095-1102.
  • 9. Kralj S., Garašić I., Kožuh Z.: Diffusible hydrogen in underwater wet welding. Welding in the World. 52 (2008), 687-692.
  • 10. Jia C., Zhang T., Maksimov S.Y., Yuan X., Spectroscopic analysis of the arc plasma of underwater wet flux-cored arc welding. Journal of Materials Processing Technology. 213(8) (2013), 1370-1377.
  • 11. Fydrych D., Łabanowski J., An experimental study of high-hydrogen welding processes. Revista de Metalurgia. 51(4) (2015), 5-6.
  • 12. Arias A.R., Bracarense A.Q., Velocidade de propagação de trinca por fadiga de soldas subaquáticas molhadas: avaliação fora da água. Soldagem & Inspeção. 20(4) (2015), 403-411.
  • 13. Sun Q.J., Cheng W.Q., Liu Y.B., Wang J.F., Cai C.W., Feng J.C., Microstructure and mechanical properties of ultrasonic assisted underwater wet welding joints. Materials & Design. 103 (2016), 63-70.
  • 14. Gao W., Wang D., Cheng F., Deng C., Liu Y., Xu W., Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment. Journal of Materials Processing Technology. 223 (2015), 305-312.
  • 15. Gutiérrez P.H., Rodríguez, F.C., Mondragón J.J.R., Dávila J.L.A., Mata M.P.G., Chavez C.A.G., Thermo-mechanic and microstructural analysis of an underwater welding joint. Soldagem & Inspeção. 21(2) (2016), 156-164.
  • 16. Padhy G.K., Ramasubbu V., Parvathavarthini N., Wu C.S., Albert S.K., Influence of temperature and alloying on the apparent diffusivity of hydrogen in high strength steel. International Journal of Hydrogen Energy. 40(20) (2015), 6714-6725.
  • 17. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding. Archives of Civil and Mechanical Engineering. 16(4) (2016), 777-783.
  • 18. Pandey C., Saini N., Mahapatra M.M., Kumar P., Hydrogen induced cold cracking of creep resistant ferritic P91 steel for different diffusible hydrogen levels in deposited metal. International Journal of Hydrogen Energy. 41(39) 2016, 17695-17712.
  • 19. Silva L.F., Dos Santos V.R., Paciornik S., Mertens J.C.E., Chawla N., Multiscale 3D characterization of discontinuities in underwater wet welds. Materials Characterization. 107 (2015), 358-366.
  • 20. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L., Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal. 1 (2015), 8-15.
  • 21. Fydrych D., Łabanowski J., Rogalski G., Weldability of high strength steels in wet welding conditions. Polish Maritime Research. 20(2) (2013), 67-73.
  • 22. de Albuquerque V.H., Silva C.C., Moura C.R., Aguiar W.M., Farias J.P., Effect of nonmetallic inclusion and banding on the success of the two-layer temper bead welding technique. Materials & Design. 30(4) (2009), 1068-1074.
  • 23. Aloraier A.S., Joshi S., Price J.W., Alawadhi K.H., Hardness, microstructure, and residual stresses in low carbon steel welding with post-weld heat treatment and temper bead welding. Metallurgical and Materials Transactions A. 45(4) (2014), 2030-2037.
  • 24. Aloraier A., Al-Mazrouee A., Price J.W.H., Shehata T., Weld repair practices without post weld heat treatment for ferritic alloys and their consequences on residual stresses: A review. International Journal of Pressure Vessels and Piping. 87(4) (2010), 127-133.
  • 25. Aloraier A., Ibrahim R., Thomson P., FCAW process to avoid the use of post weld heat treatment. International Journal of Pressure Vessels and Piping. 83(5) (2006), 394-398.
  • 26. Łabanowski J., Prokop-Strzelczyńska K., Rogalski G., Fydrych D., The effect of wet underwater welding on cold cracking susceptibility of duplex stainless steel. Advances in Materials Science. 16(2) (2016), 68.
  • 27. Górka J., Study of structural changes in S700MC steel thermomechanically treated under the influence of simulated welding thermal cycles. Indian Journal of Engineering and Materials Sciences. 22 (2015), 497-502.
  • 28. Kurji R., Lavigne O., Ghomashchi R., Micromechanical characterisation of weld metal susceptibility to hydrogen-assisted cold cracking using instrumented indentation. Welding in the World. 60(5) (2016), 883–897.
  • 29. Sharp J. V., Billingham J., Robinson M. J., The risk management of high-strength steels in jackups in seawater. Marine Structures. 14(4) (2001), 537-551.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3e85111-8122-428c-a486-ca49b6fa43aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.