PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decision-making based on machine learning techniques: a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Podejmowanie decyzji w oparciu o techniki uczenia maszynowego: studium przypadku
Języki publikacji
EN
Abstrakty
EN
Decision-making in companies is often based on the managers' personal experience. However, their consequences can have an impact on the development of the daily activities. To illustrate the managerial impact of decision-making, the biggest African power utility company based in South Africa will be analyzed. Various data such as annual productivity and energy sales were extracted over 15 years from his annual reports and two artificial neural network techniques named Levenberg-Marquardt and Scaled Conjugate Gradient used to analyze them. It emerged from the results obtained that between 2018 and 2020 the company experienced good growth which could extend until 2025 in the best-case scenario or else will drop again to reach its 2020 well-being state. Thus, the obtained results could be used to reinforce the decision-making and to determine the moment when decisions should be taken to prevent the demise of the company.
PL
Podejmowanie decyzji w firmach często opiera się na osobistym doświadczeniu menedżerów. Jednak konsekwencje tychże decyzji mogą mieć wpływ na rozwój codziennych działań. Aby zilustrować wpływ podejmowania decyzji na zarządzanie, przeanalizowana zostanie największa afrykańska firma energetyczna z siedzibą w RPA. Różnorodne dane, takie jak: roczna produktywność i sprzedaż energii, zostały wyodrębnione z raportów rocznych z 15 lat. Do analizy wyodrębnionych danych wykorzystano dwie techniki sztucznych sieci neuronowych o nazwach: Levenberg-Marquardt i Scaled Conjugate Gradient. Z uzyskanych rezultatów badań wynika, że w latach 2018-2020 firma doświadczyła dynamicznego wzrostu, który w najlepszym przypadku może potrwać do 2025 r po czym spoadnie do poziomu z 2020 r. Uzyskane wyniki można zatem wykorzystać do wzmocnienia procesu decyzyjnego i określenia momentu, w którym należy podjąć decyzje zapobiegające upadkowi firmy.
Rocznik
Strony
240--262
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Bibliografia
  • 1.Alsheryani, R. M., Alkaabi, S. S., Alkaabi, S. S., Aldhaheri, A. M., Khouri, F. I., Alharmoodi, S. I. and Alhajeri, A. S., (2019). Applying Artificial Intelligence (AI) for Predictive Maintenance of Power Distribution Networks: A Case Study of Al Ain Distribution Company. International Conference on Electrical and Computing Technologies and Applications (ICECTA), 1-5.
  • 2.Antonio, A.-S., Barba-Arag´on, I. and Sanz-Valle, R., (2003). Effects of training on business results. The International Journal of Human Resource Management, 14(6), 956-980.
  • 3.Bansal, R. C., (2015). Optimization methods for electric power systems overview. International Journal of Emerging Electric Power System, 2(1).
  • 4.Businesstech. (n.d.). Eskom’s 12 CEOs and executives have cost R514 million: Manuel. Retrieved September 06, 2021, from https://businesstech.co.za/news/energy/302442/eskoms-12-ceos-andexecutives
  • 5.Chai, B., Zhang, Q., Chen, Q., Zhao, T. and Gao, K., (2019). Research on Applications of Artificial Intelligence in Business Management of Power Grid Enterprises. 4th Advanced Information Technology Electronic and Automation Control Conference (IAEAC), 1, 683-.
  • 6.Chen, H., Xiong, R., Lin, C. and Shen, W., (2020). Model predictive control based real-time energy management for a hybrid energy storage system. CSEE Journal of Power and Energy Systems, 7(4), 862-874.
  • 7.Confalonieri, M., Barni, A., Valente, A., Cinus, M. and Pedrazzoli, P., (2015). An AI based decision support system for preventive maintenance and production optimization in energy intensive manufacturing plants. Technology and Innovation/International Technology Management Conference (ICE/ITMC),, 1-8.
  • 8.Demirkan, I., Demirkan, S. and Kiessling, T. S., (2020). Strategic Decision Making of Top Management: Earnings Management and Corporate Acquisitions. IEEE Transactions on Engineering Management, 69(4), 963-975.
  • 9.Eskom., (2005). Eskom Annual Report. Retrieved September 6, 2021, from https://www.eskom.co.za/OurCompany/Investors/IntegratedReports/PagesAnnualStatements.aspx
  • 10.Eskom., (2009). Eskom Annual Report. Retrieved September 6, 2021, from https://www.eskom.co.za/OurCompany/Investors/IntegratedReports/PagesAnnual Statements.aspx. Annual Report 2009.pdf.
  • 11.Gao, D., Wang, N., Bin, J., Gao, J. and Yang, Z., (2020). Value of Information Sharing in Online Retail Supply Chain Considering Product Loss. IEEE Transactions on Engineering Management, 69(5), 2155-2172.
  • 12.Garces, E., Daim, T. U. and Dabi´c, M., (2021). Evaluating RandD Projects in Regulated Utilities: The Case of Power Transmission Utilities. IEEE Transactions on Engineering Management.
  • 13.Gavin, H. P., (2019). The Levenberg-Marquardt algorithm for nonlinear least squares curvefitting problems. Department of Civil and Environmental Engineering, Duke University, 1-19.
  • 14.Gianluca, E., Margherita, A. and Passiante, G., (2020). Management Engineering: a new perspective on the integration of engineering and management knowledge. IEEE Transactions on Engineering Management, 68(3), 881-893.
  • 15.Gomes, C. P., Smith, D. and Westfold, S., (1997). A transformational approach applied to outage management of nuclear power. In Proceedings of the Thirtieth Hawaii International Conference, 5, 658-667.
  • 16.Henao-Garc´ıa, E. A., Montoya, R. A., (2021). Management Innovation in an Emerging Economy: An Analysis of Its Moderating Effect on the Technological Innovation-Performance Relationship. IEEE Transactions on Engineering Management, 70(1), 128- 141.
  • 17.Inuzuka, S. F., (2019). Reinforcement learning based on energy management strategy for HEVs. (pp. 1-6). IEEE Vehicle Power and Propulsion Conference (VPPC).
  • 18.Jabbar, R. A., Junaid, M., Masood, M. A., Zaka, A., Jahangir, H., Rafique, A. and Kaleem, R. I., (2010). Neural network (NN) based demand side management (DSM). (pp. 1-6). 20th Australasian Universities Power Engineering Conference, IEEE.
  • 19.Jiju, A., Sony, M., (2021). An Empirical Study Into Qualification and Skills of Quality Management Practitioners in Contemporary Organizations: Results From a Global Survey and Agenda for Future Research. IEEE Transactions on Engineering Management.
  • 20.Kao, L.-J., Chiu, C.-C., Lu, C.-C. and Wu, C.-Y., (2021). Identification and Rating of Workforce Competencies for Manufacturing Process Engineers: Case Study of an IC Packaging Process Engineer. IEEE Transactions on Engineering Management, 70(1), 196-208.
  • 21.Li, X.-q. A.-b., (2010). Application of back propagation neural network on performance evaluation of enterprise informatization. IEEE 17th International Conference on Industrial Engineering and Engineering Management, 34-38.
  • 22.Love, P. E., Ika, L., Luo, H., Zhou, Y., Zhong, B. and Fang, W., (2020). Rework, Failures, and Unsafe Behavior: Moving Toward an Error Management Mindset in Construction. IEEE Transactions on Engineering Management, 69(4), 1489-1501.
  • 23.Maruster, L., Alblas, A., (2020). Tailoring the Engineering Design Process Through Data and Process Mining. IEEE Transactions on Engineering Management, 69(4), 1577-1591.
  • 24.MathWorks. (n.d.). MathWorks: plotresponse. Retrieved September 16, 2022, from https://se.mathworks.com/help/deeplearning/ref/plotresponse.html
  • 25.Muhlroth, C., Grottke, M., (2020). Artificial intelligence in innovation: how to spot emerging trends and technologies. IEEE Transactions on Engineering Management, 69(2), 493-510.
  • 26.Ogunrinde, O., Shittu, E. and Dhanda, K. K., (2020). Distilling the Interplay Between Corporate Environmental Management Financial, and Emissions Performance: Evidence From US Firms. IEEE Transactions on Engineering Management, 69(6), 3407-3435.
  • 27.Onishi, N., Chan, S., (2017). The New York Times. Retrieved September 6, 2021, from https://www.nytimes.com/2017/03/31/world/africa/south-africa-pravin-gordhan-jacob-zuma.html
  • 28.Prentice, G. S., Brent, A. C. and de Kock, I. H., (2020). A Strategic Management Framework for the Commercialization of Multitechnology Renewable Energy Systems: The Case of Concentrating Solar Power in South Africa. IEEE Transactions on Engineering Management, 68(6), 1690-1702.
  • 29.Reynecke, N., Marnewick, A. and Pretorius, J.-H., (2017). Factors influencing research in an engineering faculty. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 145-149.
  • 30.Schuelke-Leech, B.-A., (2020). Engineering Entrepreneurship Teaching and Practice in the United States and Canada. IEEE Transactions on Engineering Management, 68(6), 1570-1589.
  • 31.Selyukh, A., (n.d.). NPR: Silence And Lies': McDonald's Sues Fired CEO, Says He Hid Sexual Relationships. Retrieved August 27, 2022, from https://www.npr.org/2020/08/10/900831535/silence-and-lies-mcdonalds-
  • 32.Serapelo, T. E., Erasmus, L. and Pretorius, J.-H., (2017). Engineering Change Management Impact on Project Success within a South African Petrochemical Company. (pp. 1-8). Portland International Conference on Management of Engineering and Technology (PICMET).
  • 33.Singh, N., Mulaba-Bafobiandi, A. F. and Pretorius, J.-H. C., (2018). Strategy for Sustainable Economic Growth of Small Scale Mining Operations in South Africa. (pp. 1-8). Portland International Conference on Management of Engineering and Technology (PICMET).
  • 34.Sofiyabadi, J., Valmohammadi, C., (2020). Impact of knowledge management practices on innovation performance. IEEE Transactions on Engineering Management, 69(6), 3225-3239.
  • 35.Specking, E., Gregory, S. P., Pohl, E. and Buchanan, R., (2021). Engineering Resilient Systems: Achieving Stakeholder Value Through Design Principles and System Operations. IEEE Transactions on Engineering Management, 69(6), 3982-3993.
  • 36.Tayeb, E. B., (2013). Faults detection in power systems using artificial neural network. American Journal of Engineering Research, 2(6), 69-75.
  • 37.Vermeulen, A., Pretorius, J.-H. C. and Kruger, D., (2012). Business processes capability and performance: A South African perspective Proceedings of PICMET’12. Technology Management for Emerging Technologies, 547-559.
  • 38.Vermeulen, A., Pretorius, J.-H. C., Motjoade, V. and Kruger, D., (2015). Developing and improving quality efficiency in the South African Energy industry. Portland International Conference on Management of Engineering and Technology (PICMET), 1985-1992.
  • 39.Wanto, A., Windarto, A. P., Hartama, D. and Parlina, I., (2017). Use of binary sigmoid function and linear identity in artificial neural networks for forecasting population density. International Journal of Information System and Technology, 1(1), 43-54.
  • 40.Wong, L.-W., Garry Wei-Han, T., Voon-Hsien, L., Ooi, K.-B. and Sohal, A., (2021). Psychological and System-Related Barriers to Adopting Blockchain for Operations Management: An Artificial Neural Network Approach. IEEE Transactions on Engineering Management, 70(1), 67-81.
  • 41.Xie, Y.-J., Ma, C.-F., (2015). The scaling conjugate gradient iterative method for two types of linear matrix equations. Computers and Mathematics with Applications, 70(5), 1098-1113.
  • 42.Xiong, G., Wu, H., Helo, P., Shang, X., Qin, G. X. and Wang, F.-Y., (2021). A Kind of Change Management Method for Global Value Chain Optimization and Its Case Study. IEEE Transactions on Computational Social Systems, 9(4), 1060-1074.
  • 43.Zwikael, O., Gilchrist, A., (2021). Planning to Fail: When Is Project Planning Counterproductive? IEEE Transactions on Engineering Management, 70(1), 220-231.
  • 44.Xiong, G., Wu, H., Helo, P., Shang, X., Xiong, G., Qin, R., & Wang, F. Y. (2021). A kind of change management method for global value chain optimization and its case study. IEEE Transactions on Computational Social Systems, 9(4), 1060-1074.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3e7782c-abe5-4ec1-a79a-5d82843e87be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.