PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of TiO₂ on the microstructure and phase composition of Al₂O₃ and Al₂O₃–TiO₂ APS sprayed coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plasma sprayed ceramic coatings serve as protective layers and are frequently exposed to aggressive wear, corrosion, or high-temperature environment. Currently, alumina and alumina-titania are some of the most popular protective ceramic composite coatings used in the industry. The present work deals with the investigation of the influence of TiO₂ content in the feedstock powder on the resulting microstructure and properties of Al₂O₃, Al₂O₃ + 3 wt% TiO₂, Al₂O₃ + 13 wt% TiO₂ and Al₂O₃ + 40 wt% TiO₂ coatings developed via atmospheric plasma spraying (APS). Specifically, the phase composition, morphology, and microstructure, as well as the mechanical and tribological performance of the coatings were examined. Results revealed that higher content of TiO₂ induced the transformation of phases, leading to the formation of intermediary Al₂TiO₅ and Al₂- xTi₁- xO₅ phases. Also, the dominant α–Al₂O₃ to γ–Al₂O₃ transformation confirmed the formulation of well-melted lamellas within the coating structure. It was also shown that the increase in TiO₂ content decreased the micro-hardness of the coatings due to the formation of the intermediary phases as mentioned above and thus, affected their tribological performance. The lowest volumetric wear, equal to 7.2×10⁻⁵ mm³/(N ∙ m), was reported for Al₂O₃ + 13 wt% TiO₂ coating.
Rocznik
Strony
art. no. e136735
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Physics Department, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, Tibanga, 9200, Iligan, City, Philippines
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] A. Richter, L.-M. Berger, S. Conze, Y.J. Sohn, and R. Vassen, “Emergence and impact of Al2TiO5 in Al2O3–TiO2 APS coatings”, IOP Conf. Series: Mater. Sci. Eng. 480, 012007 (2019).
  • [2] L. Pawłowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008.
  • [3] S. Islak et al., “Effect on microstructure of TiO2 rate in Al2O3– TiO2 composite coating produced using plasma spray method”, Optoelectron. Adv. Mat. (9–10), 844–849 (2013).
  • [4] J. Zimmerman, Z. Lindemann, D. Golanski, T. Chmielewski, and ´ W. Włosinski, “Modeling residual stresses generated in Ti coat- ´ ings thermally sprayed on Al2O3 substrates”, Bull. Pol. Acad. Sci. Tech. Sci. 61(2), 515–525 (2013)
  • [5] K. Kudła and J. Iwaszko, “Surface modification of ZrO2– 10 wt.% CaO plasma sprayed coating”, Bull. Pol. Acad. Sci. Tech. Sci. 64(4), 937–942 (2016).
  • [6] D. Franco, H. Ageorges, E. Lopez, and F. Vargas, “Tribological performance at high temperatures of alumina coatings applied by plasma spraying process onto a refractory material”, Surf. Coat. Technol. 371, 276–286 (2019).
  • [7] S. Mehar, S. Sapate, N. Vashishtha, and P. Bagde, “Effect of Y2O3 addition on tribological properties of plasma sprayed Al2O3–13% TiO2 coating”, Ceram. Int. 46, 11799- 11810 (2020).
  • [8] J. Rolando T. Candidato Jr., P. Sokołowski, L. Łatka, S. Kozerski, L. Pawłowski, and A. Denoirjean, “Plasma spraying of hydroxyapatite coatings using powder, suspension and solution feedstocks”, Weld. Techn. Rev. 87(10), 64–71 (2015).
  • [9] M. Winnicki, T. Piwowarczyk, and A. Małachowska, “General description of cold sprayed coatings formation and of their properties”, Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 301–310 (2018).
  • [10] K. Pietrzak, A. Strojny-N˛edza, A. Gładki, S. Nosewicz, D. Jarz ˛abek, and M. Chmielewski, “The effect of ceramic type reinforcement on structure and properties of Cu-Al2O3 composites”, Bull. Pol. Acad. Sci. Tech. Sci. 66 (4), 553–560 (2018).
  • [11] M. Michalak, L. Łatka, P. Sokołowski, A. Niemiec, and A. Ambroziak, “The microstructure and selected mechanical properties of Al2O3 + 13 wt.% TiO2 plasma sprayed coatings”, Coatings 10 (2), 173 (2020).
  • [12] M. Chmielewski and K. Pietrzak, “Metal-ceramic functionally graded materials – manufacturing, characterization, application”, Bull. Pol. Acad. Sci. Tech. Sci. 64(1), 151–160 (2016).
  • [13] A. Richter, L.-M. Berger, Y. Sohn, S. Conze, K. Sempf, and R. Vaßen, “Impact of Al2O3–40 wt.% TiO2 feedstock powder characteristics on the sprayability, microstructure and mechanical properties of plasma sprayed coatings”, J. Eur. Ceram. Soc. 39(16), 5391–5402 (2019).
  • [14] Material Product Data Sheet High Purity Aluminum Oxide Thermal Spray Powders – Oxide Ceramic Powder Materials for Thermal Spray – Oerlikon Metco.
  • [15] Material Product Data Sheet Alumina 3% Titania Thermal Spray Powders – Oxide Ceramic Powder Materials for Thermal Spray – Oerlikon Metco.
  • [16] Material Product Data Sheet Aluminum Oxide 13% Titanium Dioxide Powders – Oxide Ceramic Powder Materials for Thermal Spray – Oerlikon Metco.
  • [17] Material Product Data Sheet Aluminum Oxide 40% Titanium Dioxide Powders – Oxide Ceramic Powder Materials for Thermal Spray – Oerlikon Metco.
  • [18] H. Li, Z. Ke, J. Li, L. Xue, and Y. Yan , “An effective lowtemperature strategy for sealing plasma sprayed Al2O3-based coatings”, J. Eur. Ceram. Soc. 38(4), 1871–1877 (2018).
  • [19] A. Šuopys, L. Marcinauskas, R. Keželis, M. Aikas, and R. Us- ˙ cila, “Thermal and chemical resistance of plasma sprayed Al2O3, Al2O3–TiO2 coatings”, Res. Sq., (to be published).
  • [20] M. Djendel, O. Allaoui, R. Boubaaya, “Characterization of alumina-titania coatings produced by atmospheric plasma spraying on 304 SS steel”, Acta Phys. Pol. 132 (3), 538–540 (2017).
  • [21] S. Yugeswaran, V. Selvarajan, M. Vijay, P. Ananthapadmanabhan, and K. Sreekumar, “Influence of critical plasma spraying parameter (CPSP) on plasma sprayed alumina–titania composite coatings”, Ceram. Int. 36 (1), 141–149 (2010).
  • [22] W. Zórawski, A. Góral, O. Bokuvka, L. Lityńska-Dobrzyńska, and K. Berent, “Microstructure and tribological properties of nanostructured and conventional plasma sprayed alumina– titania coatings”, Surf. Coat. Technol. 268, 190–197 (2015).
  • [23] W. Tian, Y. Wang, and Y. Yang, “Three body abrasive wear characteristics of plasma sprayed conventional and nanostructured Al2O3–13%TiO2 coatings”, Tribol. Int. 43(5–6), 876–881 (2010).
  • [24] T. Rajesh and R. Rao “Experimental investigation and parameter optimization of Al2O3–40%TiO2 atmospheric plasma spray coating on SS316 steel substrate”, Mater. Today: Proc. 5 (2), 5012–5020 (2018).
  • [25] E. Song, J. Ahn, S. Lee, and N. Kim, “Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3–8 wt.% TiO2 coatings plasma-sprayed with nanopowders”, Surf. Coat. Technol. 202(15), 3625–3632 (2008).
  • [26] R. Yilmaz, A. Kurt, A. Demir, and Z. Tatli, “Effects of TiO2 on the mechanical properties of the Al2O3–TiO2 plasma sprayed coating”, J. Eur. Ceram. Soc. 27(2–3), 1319–1323 (2007).
  • [27] F. Freudenberg, “Study of the reaction to the solid state Al2O3 + TiO2 → Al2TiO5: structure observation”, thesis at University Lausanne (1988) [in French].
  • [28] E. Klyatskina et al., “Sliding wear behavior of Al2O3–TiO2 coatings fabricated by the suspension plasma spraying technique”, Tribol. Lett. 59(8), 1–9 (2015).
  • [29] H. Ageorges and P. Ctibor, “Comparison of the structure and wear resistance of Al2O3–13 wt.% TiO2 coatings made by GSP and WSP plasma process with two different powders”, Surf. Coat. Technol. 202(18), 4362–4368 (2008).
  • [30] N. Dejang, A. Watcharapasorn, S. Wirojupatump, P. Niranatlumpong, and S. Jiansirisomboon, “Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: a role of nano-sized TiO2 addition”, Surf. Coat. Technol. 204 (9–10), 1651–1657 (2010).
  • [31] ASTM B822 – 17 Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering, ASTM International: West Conshohocken, PA, USA (2017).
  • [32] ASTM E2109-01 01 Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International: West Conshohocken, PA, USA (2014).
  • [33] P.S. Prevéy, “X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings”, J. Therm. Spray. Tech. 9, 369–376 (2000).
  • [34] L. Marcinauskas and P. Valatkevicius, “The effect of plasma ˇ torch power on the microstructure and phase composition of alumina coatings”, Mat. Sci.–Poland 28, 451–458 (2010).
  • [35] EN ISO 4288:1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Rules and procedures for the assessment of surface texture (1996).
  • [36] EN ISO 4516: 2004 Metallic and other inorganic coatings – Vickers and Knoop microhardness tests (2004).
  • [37] ASTM G99-17 Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,ASTM International: West Conshohocken, PA, USA (2017).
  • [38] P. Bandyopadhyay, D. Chicot, B. Venkateshwarlu, V. Racherla, X. Decoopman and J. Lesage, “Mechanical properties of conventional and nanostructured plasma sprayed alumina coatings”, Mech. Mater. 53, 61–71 (2012).
  • [39] M. Wang and L. Shaw, “Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings”, Surf. Coat. Technol. 202(1), 34-44 (2007).
  • [40] I. Ahmed and T. Bergman, “Three-dimensional simulation of thermal plasma spraying of partially molten ceramic agglomerates”, J. Therm. Spray. Tech. 9, 215–224 (2000).
  • [41] M. Michalak, F.-L. Toma, L. Latka, P. Sokolowski, M. Barbosa, and A. Ambroziak, “A study on the microstructural characterization and phase compositions of thermally sprayed Al2O3–TiO2 coatings obtained from powders and water-based suspensions”, Materials 13(11), 2638 (2020).
  • [42] R. McPherson, “Formation of metastable phases in flame- and plasma-prepared alumina”, J. Mater. Sci. 8, 851–858 (1973).
  • [43] F.-L. Toma, L.-M. Berger, C. Stahr, T. Naumann, and S. Langner, “Microstructures and functional properties of suspensionsprayed Al2O3 and TiO2 coatings: an overview”, J. Therm. Spray. Tech. 19, 262–274 (2010).
  • [44] F. Dachille, P. Simons, and R. Roy, “Pressure-temperature studies of anatase, brookite, rutile and TiO2-II”, Am. Mineral. 53, 1929–1939 (1968).
  • [45] D. Goldberg, “Contribution to study of systems formed by alumina and some oxides of trivalent and tetravalent metals especially titanium oxide”, Revue Internationale Des Hautes Temperatures et Des Refractaires 5, 181–182 (1968).
  • [46] L.-M. Berger, K. Sempf, Y. Sohn, and R. Vaßen, “Influence of feedstock powder modification by heat treatments on the properties of APS-sprayed Al2O3–40%TiO2 coatings”, J. Therm. Spray. Tech. 27, 654–666 (2018).
  • [47] S. Hoffmann, S. Norberg, and M. Yoshimura, “Melt synthesis of Al2TiO5 containing composites and reinvestigation of the phase diagram Al2O3–TiO2 by powder X-ray diffraction”, J. Electroceram. 16, 327–330 (2006).
  • [48] S. Goel, S. Björklund, N. Curry, U. Wiklund, and S. Joshi, “Axial suspension plasma spraying of Al2O3 coatings for superior tribological properties”, Surf. Coat. Technol. 315, 80–87 (2017).
  • [49] M. Ghazali, S. Forghani, N. Hassanuddin, A. Muchtar, and A. Daud, “Comparative wear study of plasma sprayed TiO2 and Al2O3–TiO2 on mild steels”, Tribol. Int. 93, 681–686 (2016).
  • [50] E. Jordan et al., “Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties”, Mater. Sci. Eng. A 301(1), 80–89 (2001).
  • [51] M. Szala, A. Dudek, A. Maruszczyk, M. Walczak, J. Chmiel, and M. Kowal, “Effect of atmospheric plasma sprayed TiO2– 10%NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance”, Acta Phys. Pol. A. 136, 335–341 (2019).
  • [52] S. Yao, Y. Su, H. Shu, C. Lee, and Z. You, “Comparative study on nano-structural and traditional Al2O3–13TiO2 air plasma sprayed coatings and their thermal shock performance”, Key Eng. Mater. 739, 103–107 (2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3e76a4b-3adf-4333-a366-b3c56a6c058d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.