PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the capillary pressure-saturation pore-size distribution parameter on geological carbon sequestration estimates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cost estimates for geologic carbon sequestration (GCS) are vital for policy and decision makers evaluating carbon capture and storage strategies. Numerical models are often used in feasibility studies for the different stages of carbon injection and redistribution. Knowledge of the capillary pressure-saturation function for a selected storage rock unit is essential in applications used for simulating multiphase fluid flow and transport. However, the parameters describing these functions (e.g. the van Genuchten m pore size distribution parameter) are often not measured or neglected compared to other physical properties such as porosity and intrinsic permeability. In addition, the use of average instead of point estimates of m for numerical simulations of flow and transport can result in significant errors, especially in the case of coarse-grained sediments and fractured rocks. Such erroneous predictions can pose great risks and challenges to decision-making. We present a comparison of numerical simulation results based on average and point estimates of the van Genuchten m parameter for different porous media. Forward numerical simulations using the STOMP code were employed to illustrate the magnitudes of the differences in carbon sequestration predictions resulting from the use of height-averaged instead of point parameters. The model predictions were converted into cost estimates and the results indicate that varying m values in GCS modeling can cause cost differences of up to hundreds of millions dollars.
Rocznik
Strony
67--72
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
  • School of Earth, Environmental & Marine Sciences, Dept. Civil Engineering, University of Texas-Rio Grande Valley, Edinburg, TX 78539, USA
autor
  • Department of Earth and Planetary Sciences, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
autor
  • Department of Agricultural and Resource Economics, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
autor
  • EnSafe Inc., Nashville, TN 37228, USA
Bibliografia
  • 1. Allinson, W. G., Nguyen, N. D., & Bradshaw, J. (2003). The economics of geological storage of CO2 in Australia. APPEA Journal, 43(1), 623-636.
  • 2. Andre, L., Audigane, P., Azaroual, M., & Menjoz, A. (2007). Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir. Energy Conversion and Management, 48(6), 1782-1797.
  • 3. Audigane, P., Gaus, I., Czernichowski-Lauriol, I., Pruess, K., & Xu, T. (2007). Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site. American Journal of Science, 307(7), 974-1008.
  • 4. Azar, C., Lindgren, K., Larson, E., & Mollersten, K. (2006). Carbon capture and storage from fossil fuels and biomass-costs and potential role in stabilizing the atmosphere. Climatic Change, 74(1-3), 47-79.
  • 5. Bickle, M. (2009). Geological carbon storage. Nature Geoscience, 2(12), 815-818.
  • 6. Birkholzer, J. T., Zhou, Q., & Tsang, C.-F. (2009). Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. International Journal of Greenhouse Gas Control, 3(2), 181-194.
  • 7. Bock, B., Rhudy, R., Herzog, H., Klett, M., Davison, J., Ugarte, D. G. D. L. T., et al. (2003). Economic evaluation of CO2 storage and sink enhancement options. Final Technical Report (pp. 7-1-7-31). Tennessee: Tennessee Valley Authority Public Power Institute.
  • 8. Brooks, R. H., & Corey, A. T. (1996). Properties of porous media affecting fluid flow. Journal of the Irrigation Drainage Division, 92(2), 61-88.
  • 9. Chalbaud, C., Lombard, J. M., Martin, F., & Robin, M. (2007). Two phase flow properties of brine-CO2 systems in carbonate core: Influence of wettability on Pc and kr. In Paper presented at SPE/EAGE Reservoir Characterization and Simulation Conference, 28-31 October, Abu Dhabi, UAE.
  • 10. Cheng, C.-L., Gragg, M. J., Perfect, E., White, M. D., Lemizki, P. J., &McKay, L. D. (2013). Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models. International Journal of Greenhouse Gas Control, 8, 277-284.
  • 11. Clean Energy Ministerial. (2012). Clean energy ministerial. Retrieved July 29, 2016 from http://www.cleanenergyministerial.org.
  • 12. Corey, A. T. (1954). Interrelation of gas and oil relative permeabilities. Producers Monthly, 19(1), 38-41.
  • 13. Cropper, S. C., Perfect, E., van den Berg, E. H., & Mayes, M. A. (2011). Comparison of average and point capillary pressure-saturation functions determined by steady-state centrifugation. Soil Science Society of America Journal, 75(1), 17-25.
  • 14. DOE. (2009). Department of Energy. FOA-0000033. Recovery Act: Site characterization of promising geologic formations for CO2 storage. Retrieved August 24, 2017 from http://www.netl.doe.gov/business/solicitations/fy09#00033.
  • 15. DOE. (2010). Department of Energy. FOA-0000250. Development of innovative and advanced technologies for geologic sequestration. Retrieved August 24, 2017 from http://www.netl.doe.gov/business/solicitations/fy10#00250.
  • 16. DOE. (2011). Department of Energy. FOA-0000441. Small scale filed tests of geologic reservoir classes for geology storage. Retrieved August 24, 2017 from http://www.netl.doe.gov/business/solicitations/fy11#00441.
  • 17. DOE. (2012). Department of Energy. FOA-0000652. Technologies to ensure permanent geologic carbon storage. Retrieved August 24, 2017 from http://www.netl.doe.gov/business/solicitations/fy12#0000652.
  • 18. Doughty, C. (2007). Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves. Energy Conversion Management, 48(6), 1768-1781.
  • 19. Eccles, J. K., Pratson, L., Newell, R. G., & Jackson, R. B. (2011). The impact of geologic variability on capacity and cost estimates for storing CO2 in deep-saline aquifers. Energy Economics, 34(5), 1569-1579.
  • 20. Eccles, J. K., Pratson, L., Newell, R. G., & Jacson, R. B. (2009). Physical and economic potential of geological CO2 storage in saline aquifers. Environmental Science & Technology, 43(6), 1962-1969.
  • 21. Ennis-King, J., & Paterson, L. (2002). Engineering aspects of geological sequestration of carbon dioxide. In Paper presented at SPE Asia Pacific Oil and Gas Conference and Exhibition, 8-10 October, Melbourne, Australia.
  • 22. Friedmann, S. J., Dooley, J. J., Held, H., & Edenhofer, O. (2006). The low cost of geological assessment for underground CO2 storage: Policy and economic implications. Energy Conversion and Management, 47(13), 1894-1901.
  • 23. van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898.
  • 24. Gherardi, F., Xu, T., & Pruess, K. (2007). Numerical modeling of self-limiting and selfenhancing caprock alteration induced by CO2 storage in a depleted gas reservoir. Chemical Geology, 244(1), 103-129.
  • 25. Han,W. S., Kim, K. Y., Esser, R. P., Park, E., & McPherson, B. J. (2011). Sensitivity study of simulation parameters controlling CO2 trapping mechanisms in saline formations. Transport in Porous Media, 90(3), 807-829.
  • 26. Heath, J. E., Kobos, P. H., Roach, J. D., Dewers, T. A., & McKenna, S. A. (2012). Geologic heterogeneity and economic uncertainty of subsurface carbon dioxide storage. SPE Economics & Management, 4(1), 32-41.
  • 27. Herzog, H. (2001). What future for carbon capture and sequestration? Environmental Science and Technology, 35(7), 148-153.
  • 28. Herzog, H., & Golomb, D. (2004). Carbon capture and storage from fossil fuel use. Encyclopedia of Energy, 1, 277-287.
  • 29. Hesse, M. A., Orr, F. M., Jr., & Tchelepi, H. A. (2008). Gravity currents with residual trapping. Journal of Fluid Mechanics, 611, 35-60.
  • 30. Illinois State Geological Survey. (2011). Illinois state geological Survey. Retrieved July 29, 2016 from http://www.isgs.illinois.edu/research/sequestration/seq-11-17-2011.shtml.
  • 31. Jiang, X. (2011). A review of physical modelling and numerical simulation of longterm geological storage of CO2. Applied Energy, 88(11), 3557-3566.
  • 32. Juanes, R., Spiteri, E. J., Orr, F. M., & Blunt, M. J. (2006). Impact of relative permeability hysteresis on geological CO2 storage. Water Resources Research, 42(12), W12418.
  • 33. Krevor, S., Pini, R., Li, B., & Benson, S. (2011). Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophysical Research Letters, 38(15), L15401.
  • 34. MacMinn, C. W., Szulczewski, M. L., & Juanes, R. (2011). CO2 migration in saline aquifers. Part 2: Combined capillary and solubility trapping. Journal of Fluid Mechanics, 688, 321-351.
  • 35. McCoy, S. T., & Rubin, E. S. (2009). Variability and uncertainty in the cost of saline formation storage. Energy Procedia, 1(1), 4151-4158.
  • 36. Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522.
  • 37. Nordbotten, J. M., Celia, M. A., Bachu, S., & Dahle, H. K. (2005). Seminanalytical solution for CO2 leakage through an abandoned well. Environmental Science and Technology, 39(2), 602-611.
  • 38. Obi, E.-O. I., & Blunt, M. J. (2006). Streamline-based simulation of carbon dioxide storage in a North Sea aquifer. Water Resources Research, 42(3), W03414.
  • 39. Oldenburg, C. M., & Doughty, C. (2011). Injection, flow, and mixing of CO2 in porous media with residual gas. Transport in Porous Media, 90(1), 201-218.
  • 40. Oostrom, M., White, M. D., Porse, S. L., Krevor, C., & Mathias, S. (2016). Comparison of relative permeability-saturation-capillary pressure models for simulation of reservoir CO2 injection. International Journal of Greenhouse Gas Control, 45, 70-85.
  • 41. Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305(5686), 968-972.
  • 42. Pini, R., Krevor, S., & Benson, S. (2012). Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Advances in Water Resources, 38, 48-59.
  • 43. Plug, W.-J., & Bruining, J. (2007). Capillary pressure for the sand-CO2-water system under various pressure conditions: Application to CO2 sequestration. Advances Water Resources, 30(11), 2339-2353.
  • 44. Pruess, K. (1997). On vaporizing water flow in hot sub-vertical rock fractures. Transport in Porous Media, 28(3), 335-372.
  • 45. Pruess, K., & Garcia, J. (2002). Multiphase flow dynamics during CO2 disposal into saline aquifers. Environmental Geology, 42(2), 282-295.
  • 46. Pruess, K., Garcia, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., et al. (2002). Intercomparison of numerical simulation codes for geologic disposal of CO2. Berkeley: Lawrence Berkeley National Laboratory.
  • 47. Pruess, K., Xu, T., Apps, J., & Garcia, J. (2003). Numerical modeling of aquifer disposal of CO2. Society of Petroleum Engineers Journal, 8(1), 49-60.
  • 48. Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M., & Riahi, K. (2013). Probabilistic cost estimates for climate change mitigation. Nature, 493, 79-83.
  • 49. Schnaar, G., & Digiulio, D. C. (2009). Computational modeling of the geologic sequestration of carbon dioxide. Vadose Zone Journal, 8(2), 389-403.
  • 50. Scott, V., Gilllan, S., Markusson, N., Chalmers, H., & Haszeldine, R. S. (2013). Last chance for carbon capture and storage. Nature Climate Change, 3(2), 105-111.
  • 51. Szulczewski, M. L., MacMinn, C. W., Herzog, H. J., & Juanes, R. (2012). The lifetime of carbon capture and storage as a climate-change mitigation technology. Proceedings of the National Academy of Science, 109(14), 5185-5189.
  • 52. USEPA. (2008). U.S. Environmental protection agency. Geologic CO2 sequestration technology and cost analysis. Technical Support Document No. EPA 816-B-08-009. Washington, DC: EPA Office of Water.
  • 53. Vidas, H., Hugman, R., & Clapp, C. (2009). Analysis of geologic sequestration costs for the United States and implications for climate change mitigation. Energy Procedia, 1(1), 4281-4288.
  • 54. White, M. D., & Oostrom, M. (2003). STOMP subsurface transport over multiple phases version 3.0 User's guide. PNNL-14286. Richland, WA: Pacific Northwest National Laboratory.
  • 55. Wigand, M., Carey, J. W., Schutt, H., Spangenberg, E., & Erzinger, J. (2008). Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Applied Geochemistry, 23(9), 2735-2745.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3e43ab7-ebfa-4c26-bb75-1f39054f14a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.