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Abstract

Integrating industrial cyber-physical systems (ICPSs) with modern information technolo-
gies (5G, artificial intelligence, and big data analytics) has led to the development of in-
dustrial intelligence. Still, it has increased the vulnerability of such systems regarding
cybersecurity. Traditional network intrusion detection methods for ICPSs are limited in
identifying minority attack categories and suffer from high time complexity. To address
these issues, this paper proposes a network intrusion detection scheme, which includes an
information-theoretic hybrid feature selection method to reduce data dimensionality and
the ALLKNN-LightGBM intrusion detection framework. Experimental results on three
industrial datasets demonstrate that the proposed method outperforms four mainstream
machine learning methods and other advanced intrusion detection techniques regarding
accuracy, F-score, and run time complexity.
Keywords: intrusion detection system, industrial cyber-physical Systems, imbalanced
data, all k-nearest neighbor, LightGBM.

1 Introduction

Industrial cyber-physical systems (ICPSs) inte-
grate the physical and information worlds in the in-
dustrial field and build a controlled, trusted, scal-
able, secure, and efficient system [1]. These sys-
tems make the industrial field more intelligent,
improve industrial productivity, and promote the
progress of human industrial technology. With
the development of technologies, such as Made in

China 2025 [2], Industry 4.0 [3], Industrial Internet
of Things [4], and big data technology [5, 6], apply-
ing ICPS has been accelerated in numerous indus-
trial domains, such as manufacturing, energy, and
medicine.

Although the benefits of ICPSs are obvious,
there are also risks. Indeed, ICPSs shift the tradi-
tional industrial scene from a "closed" environment
to an interconnected network, thereby increasing
the attack risk in the industrial field. Additionally,
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cybersecurity problems suffer from greater suscep-
tibility ranging from information leakage to physi-
cal equipment damage. In recent years, typical net-
work attack incidents include the attack on Iran’s
nuclear facilities by the Stuxnet virus [7] and unau-
thorized intrusion into the Maroochy sewage treat-
ment plant in Australia [8]. These incidents indi-
cate that ICPSs will continue to be targets of in-
terest for attackers in the near future. In the NIST
ICS Security Guide, the US Department of Com-
merce highlights the importance of cybersecurity to
the secure and dependable functioning of modern
industrial operation processes [9]. Therefore, the
network security of ICPSs cannot be ignored, and
intrusion detection for ICPSs is crucial.

In recent years, the literature on intrusion de-
tection for ICPSs has been increasing yearly. For
example, Wang et al. [10] designed a region
segmentation-based anomaly detection approach
for ICPSs. In order to deal with attacks against net-
works in industrial control systems, Moustafa et al.
[11] introduced a deep learning-based anomaly de-
tection system. Zolanvari et al. [12] utilized classic
machine learning approaches, such as random for-
est, support vector machine, and decision tree, to
detect network threats in the industrial Internet of
Things. Besides, Ma et al. [13] proposed a lay-
ered and distributed detection approach based on
the system structure and attack categories of each
tier of the ICPSs to provide them security protec-
tion. Yu et al. [14] suggested R-print, a threat
detection fingerprinting method based on system
residuals for network attacks at the system control
layer in ICPSs. Chang et al. [15] introduced a
forensic-based deep learning method (named Deep-
IFS) for industrial Internet-of-Things network de-
tection. Awotunde et al. [16] developed a deep
learning-based attack detection method for indus-
trial Internet of Things applications that combines
deep feedforward neural network with rule-based
feature selection. Sampalli et al. [17] developed
a feature selection and majority voting integration
strategy based on RFE-XGBoost (recursive feature
elimination-extreme gradient enhancement) for de-
tecting attacks for power grids relying on SCADA
systems. Lu et al. [18] introduced a new self-
study spatial distribution method and a hybrid cog-
nitive computing-based boundary SMOTE and ran-
dom forest-based intrusion detection method. Li et
al. [19] suggested a knowledge distillation model

based on triadic convolutional neural networks to
reduce the time complexity in ICPSs anomaly de-
tection. Shi et al. [20] proposed a class of general-
ized learning system (OCBLS) and stacked OCBLS
(ST-OCBLS) detection method for unknown at-
tacks on worker ICPSs. Additionally, Yang et al.
[21] suggested a mixed statistical-machine learning
method for industrial control network anomalous
events. This method combines the dynamic thresh-
old method of the seasonal autoregressive moving
average (SARIMA) with the long short-term mem-
ory (LSTM).

Unfortunately, most machine learning methods
for ICPSs intrusion detection ignore data imbalance
or do not focus on feature lightweight for high-
dimensional data. Data imbalance affects the de-
tection performance of machine learning methods,
especially for attack categories with few samples.
Besides, the high dimensionality of data affects the
computational burden and detection performance of
machine learning methods.

To bridge this gap, we propose a novel intrusion
detection scheme that comprises feature selection
based on information theory and an intrusion de-
tection framework based on ALLKNN-LightGBM.
Specifically, first, we propose a hybrid feature se-
lection method based on Joint Mutual Information
(JMI), Conditional Mutual Information Maximiza-
tion (CMIM), and Double Input Symmetrical Rele-
vance (DISR) to reduce data dimensionality. Sec-
ond, we use the ALLKNN undersampling tech-
nique to adjust the imbalanced samples, and then
we use LightGBM to train and test the data. The
experimental validation is performed on the gas
pipeline, SWaT, and ToN_IoT datasets. The main
contributions of our work are summarized as fol-
lows:

First, we propose a hybrid feature selection
method based on information theory. This strategy
reduces feature redundancy and obtains a more ro-
bust feature subset.

Second, we analyze the imbalanced characteris-
tics of three mainstream network traffic datasets in
ICPSs. Additionally, we use the ALLKNN under-
sampling technique to reduce the samples and bal-
ance the dataset, which facilitates the training and
detection of the subsequent detection model.
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Third, we utilize the LightGBM to quickly train
and test the data after processing the imbalance.
The simulation experiments on three mainstream
ICPS intrusion detection datasets prove that the pro-
posed method has high efficiency in detection accu-
racy, F-score, and detection time.

The remainder of this paper is organized as fol-
lows. Section II explains the basic principles of
industrial information physical systems and imbal-
anced data. Section III describes the proposed ar-
chitecture, and Section IV evaluates our method’s
performance. Finally, Section V concludes this
work.

2 Preliminaries

2.1 Introduction of industrial cyber-
physical systems

A cyber-physical system (CPS) [22, 23] is a
multidimensional complex system that integrates
the physical and information spaces. Through
organic fusion and deep collaboration of com-
puter, communication, and control technologies, it
achieves state awareness, data collection, data pro-
cessing and analysis, scientific decision-making,
and precise control. CPS realizes an integrated de-
sign of computer, communication, and physical sys-
tems, improving the system’s reliability, efficiency,
and real-time collaboration ability and thus has a
wide range of application prospects.

ICPSs usually refer to CPSs in industrial envi-
ronments, such as smart grids [24], automated wa-
ter treatment systems [25], and gas pipeline systems
[26]. ICPSs are closely linked to existing indus-
trial control systems (ICSs), IoT, and wireless sen-
sor networks. ICPSs enable advanced smart manu-
facturing and smart services by encapsulating new
information technology, such as software-defined
networking (SDN), 5G mobile and wireless com-
munications, cloud computing and services, and big
data analytics.

Figure 1 illustrates the general framework of
ICPSs, which usually involves the physical and in-
formation spaces [27]. The physical space, i.e., the
physical layer, generally refers to sensors and spe-
cific industrial production equipment. In contrast,
the information space includes the network, com-
puting and control, application, and security lay-

ers. The function of the network layer is to real-
ize communication transmission, and the comput-
ing and control layer aims to store, calculate, pro-
cess and make decisions on information. The appli-
cation layer is responsible for specific industrial ap-
plications, such as smart manufacturing, smart fac-
tories, and smart industrial supply chains. The se-
curity layer guarantees the security and reliability of
ICPSs, including firewalls, intrusion detection sys-
tems (IDSs), intrusion prevention systems (IPSs),
security certification, and other security measures.

2.2 Imbalanced data

Imbalanced data mainly refers to samples of
one category in the original data that are signifi-
cantly higher or lower in number than those of other
categories [28]. If a category imbalance exists in bi-
nary classification data, the dataset has majority and
minority categories. The minority category means
that the sample size is a small percentage of the to-
tal sample size, and the majority category means
that the sample size is a large percentage of the to-
tal sample size. Each sample in dataset D is denoted
by (x,y), with x being the feature and y denoting the
label, where y ∈ {0,1}. Then, in the binary classi-
fication model, y=1 shows that the sample belongs
to the minority category, and y = 0 shows that the
sample belongs to the majority category.

As a result, the minority category M is defined
as follows:

M = {(x,y) |y = 1} ,(x,y) ∈ D (1)

and the majority category N is defined as:

N = {(x,y) |x = 0} ,(x,y) ∈ D (2)

where M and N meet the following constraints:

M∩N =∅ (3)

M∪N = D (4)

The imbalance ratio (IR) is the proportion of the
number of samples in the majority category to those
in the minority category. It describes the extent of
imbalance in different data sets uniformly. IR ex-
pressed as:

ImbalanceRatio(IR) =
Ma jority category
Minority category

=
N
M
(5)
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Figure 1. General framework of ICPSs.

Figure 2 depicts a typical example of imbal-
anced data, where the blue dots indicate the major-
ity category samples in the primary data, which is
category A, and the red dots are the minority cate-
gory samples in the primary data, which is category
B. In the figure, the difference in the number of blue
and red dots is significant, i.e., category B is the mi-
nority category relative to category A.

Figure 2. Diagram of imbalanced data.

Data-level approaches, or resampling methods,
are used in classification tasks for imbalanced data
[29, 30]. These methods modify the sample size
in the dataset for each category before employing
learning algorithms for training and testing. These

approaches improve the classification performance
of certain algorithms while reducing the computa-
tional overhead during their training.

Ensemble learning approaches are also used in
classification tasks for imbalanced data. They focus
on combining a data level with it to obtain power-
ful ensemble classifiers. One approach relies on a
specific ensemble learning method, such as the eX-
treme gradient boosting tree (XGBoost) [31]. An-
other category is to embed an alternative imbalance
learning method in the ensemble, such as combin-
ing SMOTE with Adaboost [32].

3 The proposed method

3.1 The architecture of the proposed
method

This paper proposes a network intrusion detec-
tion scheme for ICPSs, with Figure 3 presenting the
corresponding flowchart.

In Figure 3, the network traffic data in ICPSs
includes both normal and malicious data. Extract-
ing features from the network data generally in-
volves high-dimensional characteristics. Hence, to
address the high-dimensional data problem, we per-
form feature selection on the data and propose a hy-
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Figure 3. General flowchart of the proposed scheme for ICPSs intrusion detection.

brid feature selection method based on information
theory. This method includes Joint Mutual Informa-
tion (JMI), Conditional Mutual Information Max-
imization (CMIM), and Double Input Symmetric
Relevance (DISR). Then, we design an intrusion de-
tection framework based on ALLKNN-LightGBM.
In this framework, we analyze the imbalanced na-
ture of the data and use ALLKNN to reduce the ma-
jority sample class. We use LightGBM to train and
detect balanced network traffic data in the classifi-
cation stage.

3.2 Feature selection

Since the high dimensionality of the origi-
nal imbalanced network traffic data affects the re-
sampling and classification performance, we use
an information-theoretic-based feature selection
method, which is a filtering method. According to
the selection criteria given by Brown [33], we use
JMI, CMIM, and DISR to enhance the robustness
of the feature selection process. The JMI, CMIM,
and DISR methods are described as follows: JMI
[34] states the best compromise regarding accuracy,
stability, and flexibility. The advantage of JMI is its
ability to eliminate redundancy in features. Let Xi,
Xj be the i-th and j-th features, respectively. The
JMI score value of feature Xi is:

Jjmi (Xi) = ∑
Xj∈S

I (XiXj;Y ), (6)

where Y is a label, Xi and Xj are joint random vari-
ables, and S is the set of currently selected features.

CMIM [35] is an appealing method for filtering
feature selection. CMIM correctly distinguishes be-
tween redundant and noisy characteristics, and pri-
oritizes information-rich, irrelevant features [36].
The value of CMIM for each feature Xi is:

Jcmim (Xi) = min
Xj∈S

(
I (Xi : Y

∣∣Xj)
)
. (7)

DISR [37] is a variant of JMI. DISR considers
variable complementarity and the lower bound of
mutual information. The DISR method encourages
the selection of complementary variables that have
already been selected with a higher probability. The
feature Xi is calculated as follows:

Jdisr (Xi) = ∑
Xj∈S

I (XiXj;Y )
H (XiXjY )

. (8)

3.3 Data reduction using the ALLKNN
method

The Edited Nearest Neighbor Algorithm (ENN)
[38] uses the nearest neighbor algorithm to edit the
data, find samples that are noisy or close to the
boundary, and remove them while keeping those
that belong to the same category of nearest neigh-
bor samples. ALLKNN [39] is an undersampling
method and an extension of the ENN. ALLKNN
mainly uses the nearest neighbor algorithm (KNN)
to modify the dataset by removing samples that
are inconsistent with their nearest neighbors. This
method calculates the nearest neighbors for each
sample in the undersampled categories and removes
the samples if they do not satisfy the selection crite-
rion iteratively. Ultimately, the majority and minor-
ity categories of the samples tend to balance. The
Algorithm 1 based on ALLKNN is as follows.
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3.4 Classification using LightGBM

Ke et al. [40] proposed LightGBM, which
has been extensively utilized in machine learning.
LightGBM is an iteratively trained gradient en-
hancement system based on a decision tree algo-
rithm. Specifically, LightGBM mainly employs two
new algorithms: gradient-based one-sided sampling
(GOSS) and mutually exclusive feature bundling
(EFB). LightGBM has advantages such as being
fast, distributed, and high performance. It im-
proves the classic GBDT algorithm by employing a
Histogram-based decision tree algorithm, Gradient-
based One-Side Sampling (GOSS), Exclusive Fea-
ture Bundling (EFB), and leaf-wise algorithm, and
supports efficient parallelism. In industrial prac-
tice, LightGBM is faster to train and consumes less
memory than other algorithms while maintaining
high accuracy.

Besides, LightGBM employs GOSS to reduce
small gradient samples while retaining the large
ones. The GOSS algorithm mainly trains samples
with larger training errors. For GBDT models, each
node is usually split where the information gain is
greatest, with the information gain defined as:

Vj|O(d) = 1
nO

((
∑{xi∈O:xi j≤d}gi

)2

n j
l|O(d)

+

(
∑{xi∈O:xi j>d}gi

)2

n j
r|O(d)

)
,

(9)

where O is the training dataset, g is the negative
gradient of the loss function, and x is the sample.

nO = ∑ I [xi ∈ O], n j
l|O(d) = ∑ I [xi ∈ O : xi j ≤ d]and

n j
r|O(d) = ∑ I [xi ∈ O : xi j > d].

In the GOSS algorithm, the samples are first
sorted in descending order based on the absolute
value of their gradients. Next, a sample subset A is
obtained by retaining the top-a100% instances with
larger gradients, and the remaining subset is de-
noted as Ac. A subset B is randomly sampled from
Ac. Finally, the GOSS algorithm splits the samples
based on the estimated variance gain, calculated as
follows:

Ṽj (d) = 1
n

(
(∑xi∈Al

gi+
1−a

b ∑xi∈Bl
gi)

2

n j
l (d)

+
(∑Xi∈Ar gi+

1−a
b ∑Xi∈Br gi)

2

n j
r(d)

)
,

(10)

where Al =
{

xi ∈ A : xi j ≤ d
}

, Ar =
{

xi ∈ A : xi j > d
}

,
Bl =

{
xi ∈ B : xi j ≤ d

}
, Br =

{
xi ∈ B : xi j > d

}
is

a coefficient. During training, the Exclusive Fea-
ture Bundling (EFB) technique solves the sparsity
problem of high-dimensional data. EFB reduces the
feature dimension of data without losing informa-
tion, avoids unnecessary calculations of zero val-
ues, and improves the algorithm’s execution speed.
Specifically, first, EFB creates a graph contain-
ing weighted edges, where the weight corresponds
to the total conflict between features. Second, it
sorts the features in descending order according to
the degree of the graph. Finally, it examines each
feature in the ranked list and assigns it to an ex-
isting bundle with minor conflicts or produces a
new one. LightGBM adopts a histogram algorithm,
which buckets the original data of features. This
strategy reduces the model’s complexity, as only
discrete values of the feature "bucket" are saved
after the feature is "bucketed", significantly reduc-
ing memory usage and improving the model’s effi-
ciency during training and prediction. Algorithm 2
is a histogram-based method adopting LightGBM,
which is presented below.

The Leaf-wise algorithm adopts a more efficient
calculation strategy, where the algorithm splits from
the leaf with the maximum split gain each time
and iterates to improve accuracy. Leaf-wise suffers
from producing deeper decision trees that are prone
to overfitting. Therefore, LightGBM enhances the
decision tree’s maximum depth limitation to main-
tain efficiency while preventing algorithm overfit-
ting.

Algorithm 1 Undersampling algorithm based on
ALLKNN
Input: D:the set of samples after feature selection;

k:the value of the nearest neighbor.
Output: S: sample subset.

1: j = 1
2: mark(x) = 1
3: while j ≤ k do
4: NN( j,x) =Solve for the j nearest neighbors

of x
5: if the majority categories of NN( j,x) are in-

correctly classified then
6: mark(x) = 0
7: end if
8: j++
9: end while
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After undersampling the samples in the datasets
using the ALLKNN, we use the LightGBM for
training and detection. Regarding LightGBM, this
paper uses the gradient boosting decision Tree
(GBDT) as the weak classifier. LightGBM is a
decision tree-based ensemble method, while gra-
dient Boosting is an algorithm belonging to the
boosting ensemble family, which iterates new learn-
ers through gradient descent. Assuming a GBDT
model comprising K categorical regression trees,
the model’s detection results are expressed as fol-
lows:

ym(x) =
K

∑
k=1

T (x;ω). (11)

where T (x;ω) denotes the decision tree, de-
notes the parameter of the decision tree, and K is the
number of decision trees. During training, y0(x)= 0
is the first set, and the m-th step is the model repre-
sentation presented below:

ym(x) = ym−1(x)+T (x;ω), (12)

ω̂ = argmin
N

∑
i=1

L(yi,ym−1 (xi)+T (xi;ω) . (13)

where ym−1(x) is the current decision tree
model, ω̂ is the model parameter for the next de-
cision tree, and L(φ) represents the loss function of
the model.

4 Experimental results and perfor-
mance analysis

This section comprehensively evaluates the
performance of our proposed intrusion detection
scheme. Sections 4.1-4.3 describe the performance
metrics used in the experiments, the experimen-
tal parameter settings, the data resources, and their
imbalance characteristics. Section 4.4 describes
the unbalanced processing of experimental data us-
ing the ALLKNN method. Section 4.5 challenges
LightGBM with 8 mainstream machine learning
methods. Section 4.6 describes the classification
performance of LightGBM under different sam-
pling methods. Section 4.7 compares our method
with 4 mainstream machine learning methods. Sec-
tion 4.8 compares the proposed method’s perfor-
mance against other advanced intrusion detection
methods.

4.1 Performance indicators

In machine learning classification tasks, overall
accuracy is an important performance indicator for
classification. However, the overall accuracy can be
misleading for unbalanced data classification tasks.
Therefore, the performance evaluation metrics for
classification tasks involving unbalanced data [44]
are overall accuracy, G-measure, and F-score.

This paper uses the overall accuracy, F-score,
and run time as the core evaluation metrics. These
performance metrics are calculated based on the ob-
fuscation matrix of the attack detection. Table 1
presents the confusion matrix of the attack detec-
tion, where TP denotes the number of samples that
are true attacks and are predicted by the model as
attacks. TN denotes the number of benign samples
predicted as benign. FP denotes the number of sam-
ples that are benign and are predicted as attacks, and
FN denotes the number of samples that are attacks
and are predicted as benign.

Table 1. Confusion matrix of attack detection

Predicted
attack Category

Predicted
benign Category

Actual attack
Category

TP FN

Actual benign
Category

FP TN

Algorithm 2 Histogram-based algorithm
Input: T : training data in the experiment; d:max

tree depth; F :feature dimension of data.
1: nodeSet = [0]
2: rowSet =[0,1,2,...]
3: for n = 1 to d do
4: for node in nodeSet do
5: usedRows = rowSet[node]
6: for i = 1 to m do
7: H =new Histogram()
8: for j in usedRows do
9: bin =I.f[i][ j].bin

10: H[bin].y = H[bin].y+ I.y[ j]
11: H[bin].n = H[bin].n+1
12: end for
13: Determine the best split point for his-

togram H
14: end for
15: RowSet and nodeSet are updated using

the optimal split points
16: end for
17: end for
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1. The overall accuracy rate represents the propor-
tion of cyberattack classifications that are suc-
cessfully predicted by the model, divided by the
entire data sample:

Accuracy =
T P+T N

T P+T N +FN +T P
(14)

2. Recall rate represents the ratio of cyberattacks
detected by the model to the real cyberattacks:

Recall =
T P

T P+FN
(15)

3. Specificity (true negative rate) represents the
classification accuracy of the benign samples in
the network:

Speci f icity(True negative rate) =
T N

T N +FP
(16)

4. Accuracy indicates the model’s accuracy in pre-
dicting real cyberattacks:

Precision =
T P

T P+FP
(17)

5. The F-score represents the summed average of
recall and specificity:

F − score = 2∗ Recall ×Precision
Recall +Precision

(18)

4.2 Parameter settings

In order to validate the experimental results,
two groups of comparative experiments are con-
ducted, and the performance is compared in
terms of both learning methods and undersam-
pling. The experiments are validated on three dom-
inant datasets in intrusion detection for ICPSs: gas
pipeline, SWaT, and ToN_IoT. Additionally, to as-
sess the method’s performance more thoroughly, we
compare it against various existing advanced intru-
sion detection methods. All experiments are con-
ducted in Windows 11 using Python 3.9 on an i5-
8250 CPU with 16G ARM. Table 2 reports the pri-
mary parameters of LightGBM:

Table 2. Key parameter settings of LightGBM

Parameters
boosting_type

gbdt
Specify the type
of weak learner

num_leaves 31
Maximum leaves from
trees for base learners

learning_rate 0.1 Boosting learning rate
n_estimators 50 number of decision trees

max_depth 25
Maximum tree depth

of base learners

4.3 Dataset and its imbalance analysis

We select three mainstream benchmark datasets
in ICPSs for experimentation: gas pipeline, water
treatment (SWaT), and ToN_IoT. The gas pipeline
[41] dataset was collected from real production, in-
cluding normal and attack network behavior data.
This dataset involves seven types of attacks: NMRI,
CMRI, MSCI, MPCI, MFCI, DoS, and Reconnais-
sance. The dataset contains 97019 samples and 27
features. The SWaT [42] contains simulated data
collected on the water treatment platform for 11
days, including 946722 samples and 51 features.
The label categories are normal and attack, and we
randomly select 10% of the dataset for the exper-
iment. The ToN_IoT [43] dataset was generated
from genuine and large-scale testbed network data
provided by the Canberra Network IoT Lab at the
University of New South Wales. The dataset has 44
features, where the categories are represented as 0
and 1, where 0 indicates normal, and 1 indicates an
attack.

We also randomly chose 10% of the data to be
the experimental data. Table 3 reports the statistical
information for the three benchmark datasets:

Table 3. Information on the three benchmark
datasets utilized in the experiment

Datasets instances features
Number of
categories

Gas pipeline 97019 27 8
SWaT 94672 51 2

TON_IoT 46104 44 2

As shown in Table 3, we analyze the imbal-
ance of the categories in the three experimental
datasets. The normal category is used as the major-
ity category in the three datasets. The gas pipeline
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We select three mainstream benchmark datasets
in ICPSs for experimentation: gas pipeline, water
treatment (SWaT), and ToN_IoT. The gas pipeline
[41] dataset was collected from real production, in-
cluding normal and attack network behavior data.
This dataset involves seven types of attacks: NMRI,
CMRI, MSCI, MPCI, MFCI, DoS, and Reconnais-
sance. The dataset contains 97019 samples and 27
features. The SWaT [42] contains simulated data
collected on the water treatment platform for 11
days, including 946722 samples and 51 features.
The label categories are normal and attack, and we
randomly select 10% of the dataset for the exper-
iment. The ToN_IoT [43] dataset was generated
from genuine and large-scale testbed network data
provided by the Canberra Network IoT Lab at the
University of New South Wales. The dataset has 44
features, where the categories are represented as 0
and 1, where 0 indicates normal, and 1 indicates an
attack.

We also randomly chose 10% of the data to be
the experimental data. Table 3 reports the statistical
information for the three benchmark datasets:

Table 3. Information on the three benchmark
datasets utilized in the experiment

Datasets instances features
Number of
categories

Gas pipeline 97019 27 8
SWaT 94672 51 2

TON_IoT 46104 44 2

As shown in Table 3, we analyze the imbal-
ance of the categories in the three experimental
datasets. The normal category is used as the major-
ity category in the three datasets. The gas pipeline
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dataset is a multi-category dataset with more nor-
mal samples than the other categories, accounting
for 63.04% of the total sample size. In the gas
pipeline dataset, the imbalance ratio (IR) between
the normal category and the other categories are:
NMRI is 22.3, CMRI is 3.95, MSCI is 78.20, MPCI
is 8.01, MFCI is 106.73, DoS is 33.29, and Re-
connaissance is 8.99. The SWaT and TON_IoT
datasets include only 2 categories, normal and at-
tack, with the corresponding IR being 7.38 and
4.71, respectively.

Table 4. Imbalance ratios for the categories in the
three datasets

Dataset Category
Imbalance
ratio (IR)

Gas pipeline Normal -
NMRI 22.3
CMRI 3.95
MSCI 78.2
MPCI 8.01
MFCI 106.73
DoS 33.29

Reconnaissance 8.99
SWaT Normal -

Attack 7.38
ToN_IoT Normal -

Attack 4.71

4.4 ALLKNN processing imbalanced data

The ALLKNN undersampling method mainly
processes the sample points of the majority cate-
gory. The removed sample points of the major-
ity category are concentrated near the boundary of
the category, making the minority category samples
near the boundary balance with the majority sam-
ple points. This increases the detection accuracy
of the forthcoming detection method for the minor-
ity categories. We use the ALLKNN undersam-
pling method on all experiments and set the K value
of KNN to 3. The undersampled Normal, CMRI,
MPCI, Reconnaissance, and NMRI are undersam-
pled in the gas pipeline dataset. Normal is under-
sampled in the SWaT and ToN_IoT datasets. Table
5 compares the samples before and after sampling
for each category in the three datasets.

4.5 Performance comparison of different
learning methods

Currently, the main learning methods used in
network intrusion detection scenarios for ICPSs
can be classified into two categories: classic ma-
chine learning methods and deep learning meth-
ods. We use nine machine learning methods, which
are logistic regression (LR), naive Bayes (NB),
k-nearest neighbor (KNN), multilayer perceptron
(MLP), support vector machine (SVM), random
forest (RF), Adaboost, convolutional neural net-
work (CNN), and LightGBM.

The performance of each learning method on
the gas pipeline, SWaT, and ToN_IoT datasets are
reported in Tables 6-8. Figure 4 compares the train-
ing and testing time for each learning method, and
Tables 6-8 present the total time statistics.

Table 6. Performance of various learning methods
on the gas pipeline dataset

Methods
Accuracy

(%)
F-score

(%)
Total time

(s)

NB 94.97 93.8 3.63
LR 94.83 93.41 14.96

KNN 94.61 93.62 55.3
MLP 95.03 93.71 579.37
RF 98.89 98.9 112.59

SVM 97.73 97.43 197.01
Adaboost 98.84 98.81 129.2

CNN 95.49 94.32 601.3
LightGBM 99.08 98.11 1.71
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Table 5. Comparison of the samples before and after sampling for each category in the three datasets

Data Categories Number of original samples Number of samples after ALLKNN

Gas pipeline Normal 61156 60450
CMRI 15466 15411
MPCI 7637 7235

Reconnaissance 6805 6786
NMRI 2763 2566
DoS 1837 1837

MSCI 782 782
MFCI 573 573

SWaT Normal 83368 82116
Attack 11304 11304

ToN_IoT Normal 29958 29808
Attack 16146 16146

Figure 4. Training time and testing time comparison of various methods
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Table 7. Performance of various learning methods
on the SWaT dataset

Methods
Accuracy

(%)
F-score

(%)
Total time

(s)

NB 95.51 95.1 3.8
LR 97.31 97.2 13.92

KNN 99.3 98.35 56.64
MLP 98.97 98.02 1065.8
RF 99.1 98.95 148.96

SVM 96.55 96.33 231.2
Adaboost 99.15 98.23 456.8

CNN 96.5 95.2 1325.7
LightGBM 99.36 98.54 1.68

Table 8. Performance of various learning methods
on the ToN_IoT dataset

Methods
Accuracy

(%)
F-score

(%)
Total time

(s)

NB 82.9 79.05 18.71
LR 88.8 89.01 13.52

KNN 99.39 99.4 14.92
MLP 97.61 97.6 338.32
RF 99.93 99.41 25.88

SVM 88.35 88.61 91.2
Adaboost 99.92 99.32 25.24

CNN 98.66 98.7 446.8
LightGBM 99.94 99.56 0.64

Table 6 compares LightGBM with 8 other meth-
ods on the gas pipeline dataset, highlighting that
LightGBM has the best accuracy and total running
time (99.08% and 1.71s, respectively). Although
the accuracy values of RF and Adaboost are close
to LightGBM, LightGBM is 65 times faster than
RF and 75 times faster than Adaboost. Among the
F-score indicators, RF is the best, with a value of
98.90%. The F-score value of LightGBM is second
only to RF and Adaboost, and its value is 98.11%.

According to Table 7, LightGBM attains the
best accuracy and total running time on the SWaT
datasets (99.36% and 1.68s, respectively). KNN,
RF, and Adaboost are closer in accuracy compared
to LightGBM. However, in total time, LightGBM
outperforms KNN by 33 times, RF by 88 times, and
Adaboost by 272 times. Regarding the F-score met-
ric, RF is the best, with a value of 98.95%. The F-
score value of LightGBM is second only to RF, and
its value is 98.54%.

According to Table 8, LightGBM has the high-
est accuracy, F-score, and total running time on the
ToN_IoT dataset (99.56%, 99.94%, and 0.64s, re-
spectively), and its performance is closer to that of
KNN, RF, and Adaboost. However, in terms of total
time, LightGBM is significantly faster than KNN,
RF, and Adaboost with a value of 0.64s, which out-
performs KNN by 23 times, RF by 40 times, and
Adaboost by 39 times.

Figure 4 reveals that LightGBM is faster than
the competitor methods during training, requir-
ing 1.62s, 1.65s, and 0.62s on the gas pipeline,
SWaT, and ToN_IoT datasets, respectively. Simi-
larly, LightGBM is faster than the competitor meth-
ods during testing requiring 0.09s, 0.03s, and 0.02s
on the three datasets.

4.6 Performance comparison of different
resampling methods

In order to validate the ALLKNN method’s
performance in coping with data imbalance, this
paper compares it with various resampling meth-
ods. The comparative methods include oversam-
pling and undersampling methods. The over-
sampling methods are adaptive synthetic sampling
(ADASYN), borderline SMOTE, random oversam-
pling, and synthetic minority over-sampling tech-
nique (SMOTE). The undersampling methods in-
clude nearMiss, Tomek’s links, and random under-
sampling. The performance of these methods on the
three datasets is reported in Table 9.

Table 9 reveals that after being processed by the
ALLKNN undersampling method, the detection ac-
curacy of the LightGBM during training and testing
is better than the other resampling methods, attain-
ing 99.77%, 99.65%, and 99.96% accuracy, respec-
tively.

4.7 Performance analysis of the proposed
method

To assess the effectiveness of the learning meth-
ods in classification tasks on imbalanced data,
solely relying on classification accuracy to evalu-
ate a method’s performance is not objective. Hence,
this paper employs the F-score and classification ac-
curacy to assess the effectiveness of the methods.
The proposed method is contrasted and analyzed
with LightGBM, RF, Adaboost, and CNN, and the
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Table 9. Accuracy of LightGBM method before and after various data resampling methods

Methods
Gas pipeline SWaT TON_IoT

Accuracy (%) Accuracy (%) Accuracy (%)

Original imbalance data 99.08 99.36 99.94
ADASYN 99.18 99.39 99.83

Borderline_SMOTE 99.13 99.25 99.91
SMOTE 98.7 99.3 99.93

Random over-sampling 98.21 98.63 99.1
TomeksLinks 99.45 99.26 99.78

NearMiss 98.14 98.69 99.61
Random under-sampling 98.25 99.05 99.22

ALLKNN 99.77 99.65 99.98

Table 10. Comparative analysis of the proposed method and other methods

Methods
Accuracy (%) F-score (%)

Gas pipeline SWaT ToN_IoT Gas pipeline SWaT ToN_IoT

CNN 95.49 96.5 98.66 94.32 95.2 98.7
RF 98.89 99.1 99.93 98.9 98.95 99.41

Adaboost 98.84 99.15 99.92 98.81 98.23 99.32
LightGBM 99.08 99.36 99.94 98.11 98.54 99.56
Proposed 99.77 99.65 99.98 99.23 99.21 99.98

Figure 5. Evaluation of the proposed technique to known methods in terms of accuracy and F-score
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Table 12. Comparison results with advanced detection methods on the SWaT dataset

Methods Accuracy (%) Pecision (%) Recall (%) F-score (%)

DAICS - 91.85 86.16 88.92
AADS - 86.6 86.1 86.3

TABOR - 86.1 78.8 82.3
Proposed 99.65 99.6 98.79 99.21

Table 13. Comparison results with advanced detection methods in the ToN_IoT dataset

Methods Accuracy (%) Pecision (%) Recall (%) F-score (%)

Ensemble-ADS system 99.35 90.54 99.98 95.03
Deep Belief Network (DBN) 97.63 97.63 - 96.65

Proposed 99.98 99.98 99.97 99.98

corresponding performance is presented in Table 10
and Figure 5.

As shown in Figure 5, compared with the Light-
GBM, RF, CNN, and Adaboost methods, the pro-
posed approach provides the best detection accu-
racy, which is 99.77%, 99.65%, and 99.98%, on
the gas pipeline, SWaT, and ToN_IoT datasets, re-
spectively. The proposed approach also performs
best regarding the F-score metric, attaining 99.23%,
99.21%, and 99.98% on the gas pipeline, SWaT, and
ToN_IoT datasets.

4.8 Performance comparison with ad-
vanced detection methods

The developed solution is compared to other ad-
vanced methods to analyze further the efficacy of
the proposed intrusion detection technique, mainly
based on ALLKNN and LightGBM. The compara-
tive results on the three datasets are listed in Tables
11-13.

Table 11 reports the comparative results on the
gas pipeline dataset. The comparison methods in-
clude stacked Long Short Term Memory (LSTM)
[45], BiSRU [46], and GID [47]. Compared with
these three methods, the proposed method is op-
timal in terms of accuracy, recall, precision, and
F-score, attaining 99.77%, 99.34%, 99.13%, and
99.23%, respectively.

Table 12 presents the comparative results on
the SWaT dataset. The competitor methods in-
clude DAICS [48], AADS [49], and TABOR [50].
Compared with these three models, our proposed

method is superior in precision, recall, and F-
score, attaining 99.60%, 98.79%, and 99.21%, re-
spectively. Additionally, our model’s accuracy is
99.65%.

Table 13 lists the comparative results on the
TON_IoT dataset. The comparison methods in-
clude the Ensemble-ADS system [51] and Deep
Belief Network (DBN) [52]. Compared to these
methods, our method affords better precision, re-
call, and F-score, 99.98%, 99.97%, and 99.98%, re-
spectively.

The above comparative results reveal that the
proposed intrusion detection method outperforms
current advanced intrusion detection methods in
terms of accuracy, precision, recall, and F-score.

5 Conclusion

This paper provides a network intrusion detec-
tion scheme for ICPSs, which is based on a hy-
brid feature selection method and the ALLKNN-
LightGBM intrusion detection framework. Unlike
most existing cyber intrusion detection methods for
ICPSs, first, we design an information-theoretic-
based feature selection scheme to reduce the data
dimensionality. Second, we handle the problem of
data categories imbalance on three datasets: gas
pipeline, SWaT, and ToN_IoT through the AL-
LKNN undersampling method. Finally, the Light-
GBM method deals with the problem of long run
time and low detection accuracy. Through exper-
imental verification of the three datasets, compar-
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ing LightGBM with eight learning methods proves
that LightGBM has a greater detection rate and a
lower run time complexity. Additionally, our pro-
posed method is compared with eight other resam-
pling methods and the results show that our method
is optimal in terms of accuracy. Moreover, com-
pared with CNN, RF, Adboost, LightGBM, and ex-
isting advanced intrusion detection techniques, our
method is the best in terms of accuracy and F-score.

This work proposes an intrusion detection
scheme against known network attacks in ICPSs.
Future work will investigate detecting unknown
network attacks in ICPSs.
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ing LightGBM with eight learning methods proves
that LightGBM has a greater detection rate and a
lower run time complexity. Additionally, our pro-
posed method is compared with eight other resam-
pling methods and the results show that our method
is optimal in terms of accuracy. Moreover, com-
pared with CNN, RF, Adboost, LightGBM, and ex-
isting advanced intrusion detection techniques, our
method is the best in terms of accuracy and F-score.

This work proposes an intrusion detection
scheme against known network attacks in ICPSs.
Future work will investigate detecting unknown
network attacks in ICPSs.
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