PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of surface soil moisture from ALOS PALSAR 2 in small scale maize felds using polarimetric decomposition technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface soil moisture knowledge is important, especially in agriculture and irrigation management. Properties of microwave remote sensing like penetration power and longer wavelength facilitate retrieval of surface soil moisture. ALOS PALSAR-2, quad polarized data are used to retrieve surface soil moisture using polarization decomposition techniques in a marginal farmer small-scale maize feld. The focus of the study is to explore the utility of ALOS PALSAR-2 in retrieving surface soil moisture using the polarization decomposition technique. The demonstration of the study is carried out in Malavalli village, southern India, an agricultural predominant area. The study involves feld soil moisture sampling in synchronous with satellite pass, measuring soil properties, preprocessing of SAR data, polarization decomposition, proportional analysis, regression analysis, model calibration and validation. Van Zyl decomposition gave the highest surface scattering component (43%) and reduced volumetric scattering component compared to Yamaguchi and Freeman–Durden decomposition. Surface scattering component of Yamaguchi decomposition gave a good coefcient of determination (R2=0.8029) with feld-measured surface soil moisture. The semi-empirical model (SEM) was developed using surface scattering component and depolarization ratio with adjusted R2=0.75 at 95% confdence interval. On its comparison with existing soil moisture models, it is observed that the developed model is performing well with RMSE and AEmax of 1.81 and 2.88, respectively. Implying the applicability of ALOS PALSAR-2 in soil moisture retrieval in marginal farmer small-scale maize felds gave satisfactory results of accuracy.
Czasopismo
Rocznik
Strony
579--588
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Department of Water Resources and Ocean Engineering, NITK, Surathkal, India
  • Department of Water Resources and Ocean Engineering, NITK, Surathkal, India
autor
  • Department of Water Resources and Ocean Engineering, NITK, Surathkal, India
Bibliografia
  • 1. Baghdadi N, Cresson R, Pottier E, Aubert M, Zribi M, Jacome A, Benabdallah S (2012) A potential use for the C-band polarimetric SAR parameters to characterize the soil surface over bare agriculture fields. IEEE Trans Geosci Remote Sens 50:3844–3858
  • 2. Baghdadi N, Holah N, Zribi M (2006) Soil moisture estimation using multi-incidence and multi-polarization ASAR data. Int J Remote Sens 27(10):1907–1920. https://doi.org/10.1080/01431160500239032
  • 3. Balenzano A, Satalino G, Lovergine F, Rinaldi M, Iacobellis V, Mastronardi N, Mattia F (2013) On the use of temporal series of L-and X-band SAR data for soil moisture retrieval. Capit Plain Case Study, Eur J Remote Sens 46(1):721–737. https://doi.org/10.5721/EuJRS20134643
  • 4. Barrett BW, Dwyer E, Whelan P (2009) Soil moisture retrieval from active spaceborne observations: An evaluation of current techniques. Remote Sens 1(3):210–242. https://doi.org/10.3390/rs1030210
  • 5. Bertoldi G, Chiesa SD, Notarnicola C, Pasolli L, Niedrist G, Tappeiner U (2014) Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling. J Hydrol 516:245–257
  • 6. Cloude SR, Pottier E (1996) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34:498–518
  • 7. Cloude SR, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35:68–78
  • 8. Du P, Samat A, Waske B, Liu S, Li Z (2015) Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J Photogramm Remote Sens 105:38–53
  • 9. Dubois PC, Vanzyl JJ, Engman T (1995) Measuring soil moisture with imaging radars. IEEE Trans Geosci Remote Sens 33(4):916–926
  • 10. Engman ET (1991) Applications of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sens Environ 35:213–226. https://doi.org/10.1016/0034-4257(91)90013-V
  • 11. Ferrazzoli P et al (1997) The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass. IEEE Trans Geosci Remote Sens 35(1):5–17
  • 12. Freeman A, Durden SL (1998) A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens 36:963–973
  • 13. Gao Y. et al. 2017, Multi-frequency radiometer-based soil moisture retrieval algorithm parametrization using in situ validation sites. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, pp. 3945–3948. https://doi.org/10.1109/IGARSS.2017.8127863.
  • 14. Gherboudj I, Magagi R, Berg AA, Toth B (2011) Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data. Remote Sens Environ 115:33–43
  • 15. Hajnsek I, Cloude SR, Lee JS, Pottier E (2000) Inversion of surface parameters from polarimetric SAR data. IEEE Int Geosci Remote Sens Symp, Honol, HI, USA 24–28:1095–1097
  • 16. Hajnsek I, Jagdhuber T, Schon H, Papathanassiou KP (2009) Potential of estimating soil moisture under vegetation cover by means of polsar. IEEE Trans Geosci Remote Sens 47:442–454
  • 17. Hosseini M, McNairn H (2017) Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields. Int J Appl Earth Obs Geoinf 58:50–64
  • 18. Kornelsen KC, Coulibaly P (2013) Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J Hydrol 476:460–489
  • 19. Li Y, Zhao K, Zheng X, Ren J, Ding Y, Wu L (2014) Identification of saline-alkali soil based on target decomposition of full-polarization radar data. J Appl Remote Sens 8:1095–1096
  • 20. Lievens H, Verhoest NEC (2012) Spatial and temporal soil moisture estimation from Radarsat-2 imagery over Flevoland, The Netherlands. J Hydrol 456:44–56
  • 21. MacDonald, J. M., Korb, P., and Hoppe, R. A., “Farm size and the organization of U.S. crop farming,” Tech. Rep. ERR-152, US Department of Agriculture, Economic Research Service, Washington, DC, USA, 2013.
  • 22. Maity S, Patnaik C, Parihar JS, Panigrahy S, Reddy KA (2011) Study of physical phenomena of vegetation using polarimetric scattering indices and entropy. IEEE J Sel Top Appl Earth Obs Remote Sens 4(2):432–438
  • 23. Oh Y (2004) Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Trans Geosci Remote Sens 42:596–601
  • 24. Oh Y, Sarabandi K, Ulaby FT (1992) An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans Geosci Remote Sens 30:370–381
  • 25. Oh Y, Sarabandi K, Ulaby FT (2002) Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing 40(6):1348–1355
  • 26. Ponnurangam GG, Jagdhuber T, Hajnsek I, Rao YS (2016) Soil Moisture Estimation Using Hybrid Polarimetric SAR Data of RISAT-1. IEEE Trans Geosci Remote Sens 54(4):2033–2049. https://doi.org/10.1109/TGRS.2015.2494860
  • 27. Ponnurangam GG, Rao YS (2018) the application of compact polarimetric decomposition algorithms to L-band PolSAR data in agricultural areas. Int J Remote Sens 39(22):8337–8360. https://doi.org/10.1080/01431161.2018.1488281
  • 28. Qi Z, Yeh AG-O, Li X, Lin Z (2012) A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens Environ 118:21–39
  • 29. Rao YS, Singh G and Venkataraman G (2008) Soil moisture mapping using ALOS PALSAR quad-pol data," 2008 International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, 214–216. https://doi.org/10.1109/AMTA.2008.4763083
  • 30. Samat A, Du P, Baig MHA, Chakravarty S, Cheng L (2014) Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification. Photogramm Eng Remote Sens 80:239–251
  • 31. Saradjian MR, Hosseini M (2011) Soil moisture estimation by using multi polarization SAR image. Adv Space Res 48(2):278–286
  • 32. Shi J, Wang J, Hsu AY, Neill PY-O, Engman T (1997) Estimation of bare surface soil moisture and surface roughness parameters using L-band SAR Image Data. IEEE Trans Geosci Remote Sens 35(5):1254–1264
  • 33. Srivastava HS, Patel P, Navalgund RR, Sharma Y (2008) Retrieval of surface roughness using multi-polarized Envisat-1 ASAR data. Geocarto Int 23(1):67–77. https://doi.org/10.1080/10106040701538157
  • 34. Van Zyl JJ, Arii M, Kim Y (2011) Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Trans Geosci Remote Sens 49:3452–3459
  • 35. Vittucci C, Guerriero L, Ferrazzoli P, Rahmoune R, Barraza V, Grings F (2017) Study of multi frequency sensitivity to soil moisture variations in the lower Bermejo basin. Eur J Remote Sens 46(1):775–788. https://doi.org/10.5721/EuJRS20134646
  • 36. Wang H, Magagi R, Goita K, Jagdhuber T, Hajnsek I (2016) Evaluation of simplified polarimetric decomposition for soil moisture retrieval over vegetated agricultural fields. Remote Sens 8(2):142. https://doi.org/10.3390/rs8020142
  • 37. Xie Q, Meng Q, Zhang L, Wang C, Sun Y, Sun Z (2017) A Soil Moisture Retrieval method based on typical polarization decomposition techniques for a maize field from full-polarization radarsat-2 data. Remote Sens 9:168. https://doi.org/10.3390/rs9020168
  • 38. Yamaguchi Y, Moriyama T, Ishido M, Yamada H (2005) Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans Geosci Remote Sens 43:1699–1706
  • 39. Zribi M, Dechambre M (2003) A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sensing Environment 84:42–52
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3e0c458-94d1-48fd-9dc3-10a48ca0d1a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.