PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Desorption of Argon Implanted into Gallium Arsenide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal desorption of Ar implanted with energies 150 keV and 100 keV with fluence 1×10^16 cm^-2 into GaAs is considered. A sudden release of Ar is observed in temperature range 1100 -1180 K as a single narrow peak in TDS (Thermal Desorption Spectroscopy) spectra. This is accompanied by a strong background signal from atmospheric Ar trapped in various parts of the spectrometer. Desorption peak shift analysis allows estimation of desorption activation energy values - these are 3.6 eV and 2.5 eV for implantation energies 150 keV and 100 keV, respectively. These results are comparable to that measured for Ar implanted into germanium target.
Twórcy
autor
  • Institute of Physics, Maria Curie Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics, Maria Curie Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics, Maria Curie Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
  • 1. Goldschmidt V.M., Crystal structure and chemical constitution Trans Faraday Soc 1929; 25: 253-283.
  • 2. Akinlami J.O., Ashamu A.O., Optical properties of GaAs , J. Semicond., 2013; 34(3): 032002.
  • 3. Sze S. M.,. Ng K. K, Physics of semiconductor devices. 3rd ed., John Wiley and Sons., 2007.
  • 4. Baca A.G.,. Ashby C.I.H, Fabrication of GaAs Devices, The Institution of Engineering and Technology, 2005.
  • 5. Liou J. J., Schwierz F. , RF MOSFET: recent advances, current status and future trends Solid-State Electron. 2003; 47(11): 1881-1895.
  • 6. Wegierek P., Pietraszek J., Analysis of the Influence of Annealing Temperature on Mechanisms of Charge Carrier Transfer in GaAs in the Aspect of Possible Applications in Photovoltaics Acta Physica Polonica A 2019; 136(2): 299-302.
  • 7. Luque A., Hegedus S., Handbook of Photovoltaic Science and Engineering, 2nd Ed., John Wiley & Sons, 2011.
  • 8. Wegierek P., Pietraszek J., Application of polyenergy implantation with H + ions for additional energy levels formation in GaAs dedicated to photovoltaic cells, Archives Of Electrical Engineering 2019; 68(4): 925-931.
  • 9. Kowalski M., Partyka J., Wegierek P., Żukowski P., Komarov F.F., Jurchenko A.V., Freik D. , Frequency-dependent annealing characteristics of the implant-isolated GaAs layers, Vacuum 2005; 78(2-4): 311-317.
  • 10. Węgierek P., Billewicz P. , Research on Jump Mechanism of Electric Charge Transfer Probability in Gallium Arsenide Irradiated with H + Ion, Przegląd Elektrotechniczny 2012; 88(11b): 364-365.
  • 11. Makepeace C., Pardanaud C., Roubin P., Borodkin I. Ayres C., Coad P., Baron-Wiechec A., Jepu I., Heinola K., Widdowson A., Lozano-Perez S. and J.E.T. Contributors, The effect of beryllium oxide on retention in JET ITER-like wall tiles, Nuclear Materials and Energy 2019; 19: 346-351.
  • 12. Zhang M., Deng K., Wei F., Wu X., Du L., Liu W., Adsorption and Desorption of Tritium on/from Nuclear Graphite, ACS Omega 2022; 7(1): 752-760.
  • 13. Oya M., Shimada M., Taylor C. N., Kobayashi M. I., Nobuta Y., Yamauchi Y., Oya Y., Ueda Y., Hatano Y., Deuterium retention in tungsten irradiated by high-dose neutrons at high temperature, Nuclear Materials and Energy 2021; 27: 100980.
  • 14. Ma M., Liang L., Tang B., Xiang W., Wang Y., Cheng Y., Tan X., Decomposition kinetics study of zirconium hydride by interrupted thermal desorption spectroscopy, Journal of Alloys and Compounds 2015; 645: S217-S270.
  • 15. Hirose R., Kadono T., Onaka-Masada A., Okuyama R., Kobayashi K., Suzuki A., Y. Koga, Kurita K., Proximity gettering design of silicon wafers using silicon hydride and hydrocarbon mixture molecular ion implantation technique, Materials Science in Semiconductor Processing 2021; 135: 106063.
  • 16. Bruel M., Silicon on insulator material technology, Electron. Lett. 1995; 31(14): 1201-1202.
  • 17. Bruel M., Application of hydrogen ion beams to Silicon On Insulator material technology, Nucl. Instrum. Methods Phys. Res. B 1996; 108(3): 313-319.
  • 18. Zheng Y., Moran P. D., Guan Z. F., Lau S. S., Hansen D. M., Kuech T. F., Haynes T. E., Hoechbauer T. and Nastasi M., Transfer of n-type GaSb onto GaAs substrate by hydrogen implantation and wafer bonding, J. Electron. Mater. 2000; 29: 916-920.
  • 19. Izuhara T., Levy M., and Osgood, Jr. R. M., Direct wafer bonding and transfer of 10-μm-thick magnetic garnet films onto semiconductor surfaces, Appl. Phys. Lett. 2000; 76: 1261- 1263.
  • 20. Oliviero E., David M. L., Beaufort M. F., Barbot J. F., van Veen A., On the effects of implantation temperature in helium implanted silicon, Appl. Phys. Lett. 2002; 81(22): 4201-4203.
  • 21. Corni F., Calzolari G., Gambetta F., Nobili C., Tonini R., Zapparoli M., Evolution of vacancy-like defects in helium-implanted (100) silicon studied by thermal desorption spectrometry, Materials Science and Engineering B 2000; 71(1-3): 207-212.
  • 22. Cerofolini G.F., Calzolari G., Corni F., Frabboni S., Nobili C., Ottaviani G., Tonini R., Thermal desorption spectra from cavities in helium-implanted silicon, Phys. Rev. B 2000; 61(15): 10183.
  • 23. Godey S., Ntsoenzok E., Sauvage T., van Veen A., Labohm F., Beaufort M.F., Barbot J.F., Helium desorption from cavities induced by high energy 3He and 4He implantation in silicon Materials Science and Engineering B 2000; 73(1-3): 54-59.
  • 24. Desgardin P., Barthe M.-F., Ntsoenzok E., Liu C.L., Modifications of He implantation induced cavities in silicon by MeV silicon implantation, Applied Surface Science 2006; 252(9): 3231-3236.
  • 25. Lau W. M., Bello I. , Huang L. J., Feng X., Vos M., Mitchell I .V ., Argon incorporation in Si(100) by ion bombardment at 15–100 eV, J. Appl. Phys. 1993; 74(12): 7101.
  • 26. Filius A., van Veen A., Bijkerk K. R., and Evans J. H., The retention of Ar in low energy high fluence Ar-Irradiated Mo and Sim Radiat. Eff. 1989; 108(1): 1-8.
  • 27. Hanada R., Saito S., Nagata S., Yamaguchi S., Shinozuka T., Fujioka I., TDS and RBS studies of Ar lmplanted to Si, Mat. Sci. Forum 1995; 196-201: 1375.
  • 28. Drozdziel A., Wojtowicz A., Turek M., Pyszniak K., Maczka D., Slowinski B., Yushkevich Y.V. and Zuk J., Thermal Desorption Studies of Ar + Implanted Silicon, Acta Phys. Pol. A 2014; 125(6): 1400-1403.
  • 29. Werner M.,. van den Berg J. A, Armour D. G., Carter G., Feudel T., Herden M., Bersani M., Giubertoni D., Ottaviano L., Bongiorno C., Mannino G., Bailey P., and. Noakes, T. C. Q Shallow BF2 implants in Xe-bombardment-preamorphized Si: theinteraction between Xe and F, Appl. Phys. Lett. 2005; 86(15): 151904.
  • 30. Barbieri P. F., Landers R., and Marques F.C., Electronic and structural properties of implanted xenon in amorphous silicon, Appl. Phys. Lett. 2007; 90(16): 164104.
  • 31. Turek M., Droździel A., Pyszniak K., Wójtowicz A., Vaganov Y., Termodesorpcja ksenonu implantowanego do krzemu, Przeglad Elektrotechniczny 2018; 94(7): 157-161.
  • 32. Turek M., Droździe1 A., Wójtowicz A., Filiks J., Pyszniak K., Mączka D., Yuschkevich Y., Thermal Desorption of Krypton Implanted into Silicon, Acta Phys. Pol. A 2017; 132(2): 249-253.
  • 33. David M-L., Alix K., Pailloux F., Mauchamp V., Couillard M., Botton G. A., and Pizzagalli L., In situ controlled modification of the helium density in single helium-filled nanobubbles, Journal of Applied Physics 2014; 115(12): 123508.
  • 34. Yang F., Zhang X.-X. ,Ye T.-C. and Zhuang S.-L., The Investigation on Surface Blistering of Ge Implanted by Hydrogen under the Low Temperature Annealing, Journal of The Electrochemical Society 2011; 158(12): H1233.
  • 35. Turek M., Droździel A., Pyszniak K., Vaganov Y.A., Termodesorpcja argonu implantowanego do germanu, Przegląd Elektrotechniczny 2020; 96(8): 126-130.
  • 36. Turek M., Droździel A., Pyszniak K., Prucnal S., Żuk J., Vaganov Yu., Thermal Desorption of He Implanted into Ge, Acta Physica Polonica A 136(2), 2019, 285-289
  • 37. Collino R. R., Blister Formation And Layer Transfer Of N-Implanted GaAs, PhD Thesis, The University of Michigan, 2010.
  • 38. Gawlik G., Jagielski J., and Piatkowski B., GaAs on. Si: towards a low-temperature smart-cut. Technology, Vacuum 2003; 70(2-3): 103-105.
  • 39. Webb M., Jeynes C., Gwilliam R. M., Tabatabaian Z., Royle A., and Sealy B. J., The influence of the ion implantation temperature and the flux on smartcut© in GaAs. Nucl. Instrum. Methods Phys. Res. B 2005; 237(1-2): 193-196.
  • 40. Webb M., Jeynes C., Gwilliam R., Too P., Kozanecki A., Domagala J., 41. Royle A., and Sealy B., The influence of the ion implantation temperature and the dose rate on smartcut (c) in GaAs, Nucl. Instrum. Meth. B 2005; 240(1-2): 142-145.
  • 42. Radu I., Szafraniak I., Scholz R., Alexe M., and Gösele U., GaAs on Si heterostructures obtained by He and/or H implantation and direct wafer bonding, J. Appl. Phys. 2003; 94(13): 7820-7825.
  • 43. Chung C., Yi S. I., Weinberg W. H., Adsorption state of hydrogen sulfide on the GaAs (001)-(4×2) surface, J. Vac. Sci. Technol. A 1997; 15(3): 1163-1167.
  • 44. Mokler S. M., Watson P. R., Ungier L. and Arthur J. R. Adsorption and thermal desorption of chlorine from GaAs(100) surfaces, Journal of Vacuum Science & Technology B 1992; 10(6): 2371-2377.
  • 45. Donev S., Brack N., Paris N. J., Pigram P. J., Singh N. K., Usher B. F., Surface Reactions of 1-Propanethiol on GaAs(100), Langmuir 2005; 21(5): 1866-1874.
  • 46. Ziegler J. F., Ziegler M. D., Biersack J. P., SRIM - The Stopping and Range of Ions in Mater Nucl. Instr. Meth. B 2010; 268(11-12): 1818-1823.
  • 47. Corni F., Nobili C., Ottaviani G., Tonini R., Calzolari G., Cerofolini G. F. and Queirolo G., Helium in silicon: Thermal-desorption investigation of bubble precursors, Phys. Rev. B 1997; 56: 7331.
  • 48. Haynes T.E.,. Chu W.K, Aselage T.L., Picraux S.T., Initial decomposition of GaAs during rapid thermal annealing, Appl. Phys. Lett. 1986; 49(11): 666-668.
  • 49. Redhead P.A, Thermal desorption of gases, Vacuum 1962; 12(4): 203-211.
  • 50. de Jong A.M. and Niemantsverdriet J.W., Thermal desorption analysis: Comparative test of ten commonly applied procedures, Surface Sciences 1990; 233 (3): 355-365.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3d76f8d-213e-4c98-8ba5-b9440360aa6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.