PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of Tube Piercing Processes in the Two-Roll and Three-Roll Mills

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a comparison of the piercing process conducted in a two-roll Diescher mill and a three-roll mill. The comparative analysis was based on the numerical simulations of the aforementioned processes, obtained using Forge NxT 1.1. software. It was stated that the most favourable manufacturing method is skew rolling in three-mill rolling mills. The mills operating in this scheme are less energy-consuming, whereas the manufacturing time is 30% shorter.
Słowa kluczowe
Twórcy
  • Lublin University of Technology, Mechanical Engineering Faculty, Nadbystrzycka 36., 20-618 Lublin, Poland
  • Lublin University of Technology, Mechanical Engineering Faculty, Nadbystrzycka 36., 20-618 Lublin, Poland
  • Lublin University of Technology, Mechanical Engineering Faculty, Nadbystrzycka 36., 20-618 Lublin, Poland
Bibliografia
  • 1. Urbański S., Kazanecki J., Simulation of piercing process in Diescher rolling mills by the finite element method, Archives of Metallurgy, vol. 40, 1993, no. 4, pp. 419-435.
  • 2. Malinowski Z., Kazanecki J., Urbański S., Thermal-mechanical model of the tube elongation process in Diescher’s mill, Journal of Materials Processing Technology, 60 (1996), 513-516.
  • 3. Mori K., Yoshimura H., Osakada K., Simplified three-dimensional simulation of rotary piercing of seamless pipe by rigid-plastic finite-element method, Journal of Materials Processing Technology, 80-81 (1998), 700-706.
  • 4. Yoshimura H., Mihara Y., Mori K., Simplified 3-D FE simulation of rotary piercing controlling rotation of plug. At: Simulation of Materials Processing: Theory, Methods and Applications, Mori (ed.), 2001 Swets & Zeitlinger, Lisse, 577-582.
  • 5. Ceretti E., Giardini C., Attanasio A., Analysis of Rotary Tube Piercing Process: Simulation and Experimental Results. Proc. of AITEM 01, Sept. 2001, Bari, Italy.
  • 6. Capoferri G., Ceretti E., Giardini C., Attanasio A., Brisotto F., FEM Analysis of Rotary Tube Piercing Process. Tube & Pipe Technology, 2002, 55-58.
  • 7. Shengzhi L., Dahong C., Zhongjian S., Influence of Cross Angle on Stress and Strain of Tube Blanks During Rotary Rolling. Iron and Steel 36 (2001), 34-38 (in Chinese).
  • 8. Pietsch J., Thieven P., FEM simulation of the rotary tube piercing process. MPT International (2003) 2, 52-60.
  • 9. Ceretti E., Giardini C., Attanasio A., Brisotto F., Capoferri G., Rotary Tube Piercing Study by FEM Analysis: 3D Simulations and Experimental Results. Tube and Pipe Technology (2004) March/ April, 155-159.
  • 10. Komori K., Simulation of Mannesmann piercing process by the three-dimensional rigid-plastic finite-element method. International Journal of Mechanical Sciences 47 (2005), 1838-1853.
  • 11. Barazategiu D. A., Cavaliere M. A., Montelatici L., Dvorkin E. N., On the modelling of complex 3D bulk metal forming processes via the pseudo-concentrations technique. Application to the simulation of the Mannesmann Piercing process. International Journal for Numerical Methods in Engineering 65 (2006), 1113-1144.
  • 12. Pater Z., Kazanecki J., Bartnicki J., Three dimensional thermo-mechanical simulation of the tube forming process in Diescher’s mill. Journal of Materials Processing Technology 177 (2006), 167-170.
  • 13. Pater Z., Kazanecki J., Thermo-Mechanical Analysis of Piercing Plug Loads in the Skew Rolling Process of Thick-Walled Tube Shell. Metallurgy and Foundry Engineering 32 (2006) 1, 31-40.
  • 14. Pater Z., Bartnicki J., Kazanecki J., 3D Finite Elements Method (FEM) Analysis of Basic Process Parameters in Rotary Piercing Mill. Metalurgija 51 (2012) 4, 501-504.
  • 15. Pater Z., Kazanecki J., Complex Numerical Analysis of the Tube Forming Process Using Diescher Mill. Archives of Metallurgy and Materials 58 (2013) 3, 717-724.
  • 16. Zhao Y., Mao J., Effects of feed angle on Mannesmann Piercing in Drill Steel Production. Advanced Materials Research 915-916 (2014), 996-999.
  • 17. Zhao Y. Q., Mao J. H., Liu F. F., Ma Z. H., Experiments and Simulation on Mannesmann Piercing Process in the Drill Steel Manufacture. Strength of Materials 47 (2015) 1, 29-40.
  • 18. Murillo-Marrodan A., Garcia E., Cortes F., Friction Modelling of a Hot Rolling Process by means of the Finite Element Method. Proc. of the World Congress on Engineering 2017, July 5-7, 2017, London, U.K., vol. II.
  • 19. Chastel Y., Diop A., Fanini S., Bouchard P.O., Mocellin K., Finite Element Modeling of Tube Piercing and Creation of a Crack. International Journal of Material Forming (2008) Suppl 1, 355-358.
  • 20. Ghiotti A., Fanini S., Bruschi S, Bariani P.F., Modelling of the Mannesmann effect. CIRP Annals - Manufacturing Technology 58 (2009), 255-258.
  • 21. Joun M., Lee J., Cho J., Jeong S., Moon H., Quantitive study on Mannesmann effect in roll piercing of hollow shaft. Procedia Engineering 81 (2014), 197-202.
  • 22. Skripalenko M.M., Bozhenov V.E., Romantsev B.A., Skripalenko M.N., Huy T.B., Gladkov Y.A., Mannesmann piercing of ingots by plugs of different shape. Materials Science and Technology (2016), 1-9 DOI 10.1080/02670836.2016.1145840.
  • 23. Romantsev B.A., Skripalenko M.M., Huy T.B., Skripalenko M.N., Gladkov Y.A, Gartvig A.A., Computer simulation of piercing in a four-high screw rolling mill. Metallurgist 61 (2018) 9-10, 729-735.
  • 24. Stefanik A., Szota P., Mróz S., Dyja H. Analysis of the Aluminum Bars in Three-high Skew Rolling Mill Rolling Process. Solid State Phenomena 220- 221 (2015), 892-897.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3d6d108-b83a-4ba4-9af1-e38b1a3c56bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.