PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response surface methodology assisted multi-objectiveoptimization of TIG process for 15CDV6 steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Welding is a way of heating pieces of metal usingelectricity or flame so that they melt and stick together. There aremany kinds of welding processes, such as, for instance, MIG/MAGand MMA welding. However, such welding schemes require moreelectrodes during the process of welding. Hence, this paper intendsto analyse the alternative tungsten inert gas (TIG) welding tech-nology using Response Surface Methodology (RSM), and to identifythe effect of TIG welding process parameters on the weld bead pro-file of 15CDV6 high strength low alloy (HSLA) steel. Moreover, themethodology applied allows for identification of the optimal weld-ing conditions by means of multi-objective optimization using RSMto increase the depth of penetration (DOP) and reduce BW (beadwidth) and heat-affected zone (HAZ) width. The variables takenfor the model-based investigations are: welding current (Wc), torchspeed (Ts), gas flow rate (Gr), torch angle (Ta) and arc gap (Ag).Moreover, the responses taken are DOP, BW and HAZ width. Fur-ther, the results from the proposed model optimisation can be seenas highly beneficial for the rocket-motor hardware program, indus-tries and fabrication of pressure vessels, which are using 15CDV6steel.
Rocznik
Strony
465--496
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Noorul Islam Centre for Higher Education, Thuckalay, Tamil Nadu,India - 629180
  • Noorul Islam Centre for Higher Education, Thuckalay, Tamil Nadu,India - 629180
autor
  • Noorul Islam Centre for Higher Education, Thuckalay, Tamil Nadu,India - 629180
  • PSNA College of Engineering & Technology, Dindigul, Tamilnadu,India – 624622
Bibliografia
  • [1] Ai, Y., Shao, X., Jiang, P., Li, P., Liu, W.(2016) Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials. Optics and Lasers in Engineering, 86, 62-74.
  • [2] Chandrasekar, G., Kailasanathan, C., Verma, D.K.(2017) Investigation on unpeened and laser shock peened weldment of Inconel 600fabri-cated by ATIG welding process. Materials Science and Engineering: A, 690, 405-417.
  • [3] Chellappan, M., Lingadurai, K., Sathiya, P.(2017) Characterization and Optimization of TIG welded supermartensitic stainless steel usingTOPSIS. Materials Today: Proceedings,4(2): 1662-1669.
  • [4] Chen, J., Wu, C.S., Chen, M.A.(2014) Improvement of welding heat sourcemodels for TIG-MIG hybrid welding process.Journal of Manufacturing Processes,16(4): 485-493.
  • [5] Chen, J., Zong, R., Wu, C., Padhy, G.K., Hu, Q.(2017) Influence oflow current auxiliary TIG arc on high speed TIG-MIG hybrid welding.Journal of Materials Processing Technology, 243, 131-142.
  • [6] Chen, Q., Lin, S., Yang, C., Fan, C., Ge, H.(2017) Grain fragmentationin ultrasonic-assisted TIG weld of pure aluminum. Ultrasonics Sonochem-istry, 39, 403-413.
  • [7] Chinchole, P.N.K.P.(2016) Medical Image Fusion using YCbCr Colour Transformation. International Journal of Computer Science Trends and Technology, 4(4).
  • [8] Cornu, J.(1998) Advanced welding system, TIG and related process, Part 2. IFS Publication Ltd., UK, 97–123.
  • [9] Costa, J.D., Sousa, M.B., Fook, N.C.M.L., Alves, J.J.N., Santana, R. A. C.(2016) Obtaining and characterization of Ni-Ti/Ti-Mo joints welded by TIG process. Vacuum, 133, 58-69.
  • [10] DuPont, J.N. and Marder, A.R.(1995) Thermal efficiency of arc welding processes. Welding Journal,74(12).
  • [11] Gao, Z., Shao, X., Jiang, P., Cao, L., Wang, C.(2016) Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steelusing Kriging model and GA.Optics & Laser Technology, 8, 153-1623.
  • [12] Hirose, T., Sakasegawa, H., Nakajima, M., Tanigawa, H.(2015) Mechanical properties of TIG and EB weld joints of F82H.Fusion Engineering and Design, 98–99, 1982-1985.
  • [13] Jahanzaib, M., Wasim, A., Hussain, S.(2014) Surface roughness modeling using RSM for HSLA steel by coated carbide tools. International Journalof Advanced Manufacturing Technology78(5-8), 1031–1041.
  • [14] Junaid, M., Baig, M.N., Shamir, M., Khan, F.N., Haider, J.(2017)A comparative study of pulsed laser and pulsed TIG welding of Ti-5Al-2.5Sn titanium alloy sheet. Journal of Materials Processing Technology,242, 24-38.
  • [15] Korra, N.N., Vasudevan, M., Balasubramanian, K.R.(2014) Multiobjective optimization of activated tungsten inert gas welding of duplex stainless steel using response surface methodology.The International Journal of Advenced Manufacturing Technology,77(1-4), 67–81.
  • [16] Liang, Y., Hu, S., Shen, J., Zhang, H., Wang, P.(2017) Geometrical and microstructural characteristics of the TIG-CMT hybrid welding in 6061aluminum alloy cladding. Journal of Materials Processing Technology,239, 18-30.
  • [17] Longlong, G., Hualin, Z., Shaohu, L., Yueqin, L., Chunyu, F.(2016)Formation Quality Optimization and Corrosion Performance of Inconel625 Weld Overlay Using Hot Wire Pulsed TIG.Rare Metal Materials andEngineering,45(9): 2219-2226.
  • [18] Luo, X., Chen, X., Wang, T., Pan, S., Wang, Z.(2018) Effect of morphologies of martensite–austenite constituents on impact toughness inintercritically reheated coarse-grained heat-affected zone of HSLA steel.Materials Science and Engineering: A, 710, 192-199.
  • [19] Meng, X., Qin, G., Zhang, Y., Fu, B., Zou, Z.(2014) High speed TIG–MAG hybrid arc welding of mild steel plate. Journal of Materials Processing Technology,214(1): 2417-24241.
  • [20] Montgomery, D.C.(1991)Design and Analysis of Experiments, 3. JohnWiley, New York.
  • [21] Montgomery, D.C., Myers, R.H., Anderson C,M.(2009)Response Surface Methodology, 3. John Wiley, New York.
  • [22] Nagesh, D.S., Datta, G.L.(2010) Genetic algorithm for optimization ofwelding variables for height to width ratio and application of ANN forprediction of bead geometry for TIG welding process.Applied Soft Computing,10(3): 897-907.
  • [23] Nelson, T.W. and Rose, S.A.(2016) Controlling hard zone formation infriction stir processed HSLA steel. Journal of Materials Processing Technology, 231, 66 74.
  • [24] Piekarska, W., Rek, K.(2017) Numerical Analysis and Experimental Research on Deformation of Flat Made of TIG Welded 0H18N9 Steel. Procedia Engineering, 177, 182-187.
  • [25] Prasad, V.M.V., Varghese, V.M.J., Suresh, M.R., Kumar, D.S.(2016)3D Simulation of Residual Stress Developed During TIG Welding of Stainless Steel Pipes. Procedia Technology, 24, 364-371.
  • [26] Ragavendran, M., Chandrasekhar, N., Ravikumar, R., Saxena, R.,Bhaduri, A.K.(2017) Optimization of hybrid laser – TIG welding of316LN steel using response surface methodology (RSM).Optics and Lasersin Engineering, 94, 27-36.
  • [27] Shi, Y., Zheng, Z., Huang, J.(2013) Sensitivity model for prediction ofbead geometry in underwater wet flux cored arc welding. Transactions of Nonferrous Metals Society of China,23(7): 1977-1984.
  • [28] Singh, A.K., Dey, V., Rai, R.N.(2017) Techniques to improve weld pen-etration in TIG welding (A review).Materials Today: Proceedings,4(2):1252-1259.
  • [29] Srirangan, A.K., Paulraj, S.(2016) Multi-response optimization of process parameters for TIG welding of Incoloy 800HT by Taguchi grey relational analysis. Engineering Science and Technology, an InternationalJournal,19(2): 811-817.
  • [30] Srivastava, S., Garg, R.K.(2017) Process parameter optimization of gasmetal arc welding on IS:2062 mild steel using response surface methodol-ogy.Journal of Manufacturing Processes, 25, 296-305.
  • [31] Thompson, S.W.(2018) Fine–scale structural features of intercritically agedHSLA-100 plate steel and their influence on yield strength and low-temperature impact toughness.Materials Characterization, 136, 425-434.
  • [32] Vasantharaja, P. and Vasudevan, M.(2015) Optimization of A-TIGwelding process parameters for RAFM steel using response surface method-olog.J. Materials: Design and Applications, 1-16.
  • [33] Vidyarthy, R.S., Dwivedi, D.K.(2018) Microstructural and mechanicalproperties assessment of the P91 A-TIG weld joints.Journal of Manufac-turing Processes, 31, 523-535.
  • [34] Wang, H., Yuan, X., Li, T., Wu, K., Xu, C.(2018) TIG welding-brazingof Ti6Al4V and Al5052 in overlap configuration with assistance of zincfoil.Journal of Materials Processing Technology, 251, 26-36.
  • [35] Yan, G., Tan, M.J., Crivoi, A., Li, F., Chia, C.H.N.(2017) Improvingthe mechanical properties of TIG welding Ti-6Al-4V by post weld heat treatment. Procedia Engineering, 207, 633-638.
  • [36] Yang, X., Deng, W., Zou, L., Zhao, H., Liu, J.(2013) Fatigue behaviors prediction method of welded joints based on soft computing methods. Materials Science and Engineering: A, 559, 574-582.
  • [37] Zou, J.L., Wu, S.K., Xiao, R.S., Li, F.(2015) Effects of a paraxial TIGarc on high-power fiber laser welding. Materials & Design, 86, 321-327.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3d12388-58de-416c-a921-5b80326f9dbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.