PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphological, chemical and structural characterization of silica-containing polyvinylpyrrolidone electrospun nanofibers prepared by sol-gel technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to produce poly(vinylpyrrolidone) (PVP) containing silica nanofibers using electrospinning method from 10% PVP/EtOH solutions with different mass concentration 0 and 30% of tetraethoxysilane. Sol-gel technique was used to obtain nanofiber membranes with high amount of inorganic phase. In the case when metal alkoxide, such as tetraethyl orthosilicate (TEOS) is mixed with an organic polymer, hydrolysis and condensation reaction of TEOS occur in-situ with polymer matrix, which allows to fabricate organic-inorganic hybrid structures with uniform dispersion. Design/methodology/approach: The examination of the morphology of the obtained PVP/silicon dioxide nanofibers using scanning electron microscope (SEM) has been made. The chemical structure of produced nanostructures was investigated by Fourier - Transform Infrared spectroscopy (FTIR) and Energy Dispersive Spectrometry (EDX) to analyze the regular dispersion by examining types of bonds occurring between polymer matrix and SiO2 phase. Findings: Results obtained in this paper shows that the mass concentration of the reinforcing phase in form of TEOS have an influence on the average diameter of nanofibers and with the increase of tetraethyl orthosilicate in solution nanofibers diameters decrease. Moreover, structural examination shows uniform dispersion of the reinforcing phase in hybrid materials. Research limitations/implications: Uniform dispersion of the reinforcing phase in silica-containing PVP nanofibers gives the opportunity to make nanowires in calcination process from such obtained fibrous mats and use in novel electrical devices. Originality/value: This paper describes an easy and more effective way of making polymer nanofibers with the content of silicon dioxide with the perspective way of making silica nanowires in the future from obtained hybrid nanofibers, so that this method can replace commonly used nanowires growth processes.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr.35 poz., rys., tab.
Twórcy
autor
  • Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Center for Nanotechnology, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] T. Tański, W. Matysiak, Ł. Krzemiński, Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers, Materials and Manufacturing Processes, 2016.
  • [2] T. Tański, W. Matysiak, L. Markovicova, N. Florek-Szotowicz, P. Snopiński, Ł. Krzemiński, M. Wiśniowski, Analysis of the morphology and properties of PAN/Bi2O3 composite nanomaterials produced by electrospraying method, Journal of Achievements of Materials and Manufacturing Engineering 73/2 (2015) 176-184.
  • [3] W. Matysiak, T. Tański, M. Zaborowska, Analysis of the Optical Properties of PVP/ZnO Composite Nanofibers, Properties and characterization of modern materials, Andreas Ochsner, Holm Altenbach, Singapore, Springer, 2017, 43-49.
  • [4] S. Ramaksrishna, K. Fujihara, WE Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: solving global issues, Materials Today 9 (2006) 40-50.
  • [5] L. Dobrzański, B. Nieradka, M. Macek, W. Matysiak, Influence of the electrospinning parameters on the morphology of composite nanofibers, Archives of Materials Science and Engineering 69/1 (2014) 32-37.
  • [6] A. Morikawa, Y. Iyoku, M. Kakimoto, Y. Imai, Preparation of Silica-Containing Polyvinylpyrrolidone Films by Sol-Gel Process, Polymer Journal 24 (1992) 689-692.
  • [7] P. He, H.M. Li, X.Y. Wang, Y. Gao, In situ preparation of poly(ethylene terephthalate)-SiO2 nanocomposites, European Polymer Journal 42 (2006) 1128-1134.
  • [8] Y. Wu, C. Wu, F. Yu, T. Xu, Y. Fu, Free-standing anion-exchange PEO-SiO2 hybrid membranes, Journal of Membrane Science 307 (2008) 28-36.
  • [9] M.C. Kuo, C.M. Tsai, J.C. Huang, M. Chen, PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates, Materials Chemistry and Physics, 90 (2005) 185-195.
  • [10] J.C. Almeida, A.G.B. Castro, I.M.M. Salvado, F.M.A. Margaca, M.H. Vaz Fernandes, A new approach to the preparation of PDMS-SiO2 based hybrids - A structural study, Materials Letters 128 (2014) 105-109.
  • [11] L. Jin, W. Shi, S. Yu, X. Yi, N. Sun, C. Ma, Y. Liu, Preparation and characterization of a novel PA-SiO2 nanofiltration membrane for raw water treatment, Desalination 298 (2012) 34-41.
  • [12] T. Taski, W. Matysiak, B. Hajduk, Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles, Beilstein Journal of Nanotechnology 7 (2016) 1141-1155.
  • [13] N. Wahyudiono, S. Machmudah, H. Kanda, S. Okubayashi, M. Goto, Formation of PVP hollow fibers by electrospinning in one-step process at sub and supercritical CO2, Chemical Engineering and Processing: Process Intensification 77 (2014) 1-6.
  • [14] S.J. Choa, S.M. Jungb, M. Kanga, H.S. Shinb, J.H. Youka, Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility, Polymer 69 (2015) 95-102.
  • [15] M. Wang, D. Fang, N. Wang, S. Jiang, J. Nie, Q. Yu, G. Ma, Preparation of PVDF/PVP core-shell nanofibers mats via homogeneous electrospinning, Polymer 55/9 (2014) 2188-2196.
  • [16] M.M. Aria, A. Irajizad, F.R. Astaraei, S.P. Shariatpanahi, R. Sarvari, Ethanol sensing properties of PVP electrospun membranes studied by quartz crystal microbalance, Measurement 78 (2016) 283-288.
  • [17] W. Samprasit, P. Akkaramongkolporn, T. Ngawhirunpat, T. Rojanarata, R. Kaomongkolgit, P. Opanasopit, Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam, International Journal of Pharmaceutics 487/1-2 (2015) 213-222.
  • [18] Y. Tang, X. Wang, Q. Zhang, Y. Li, H. Wang, Fabrication and characterization of high solid content Co0.8Ni0.2Fe2O4/PVP composite nanofibers by directdispersed electrospinning, Synthetic Metals 162/3-4 (2012) 309-313.
  • [19] Y. Zhang, M. Park, H.Y. Kim, M. El-Newehy, K.Y. Rhee, S.J. Park, Effect of TiO2 on photocatalytic activity of polyvinylpyrrolidone fabricated via electrospinning, Composites Part B: Engineering 80 (2015) 355-360.
  • [20] E. Yan, Z. Huang, Y. Xin, Q. Zhao, W. Zhang, Polyvinylpyrrolidone/tris(8-quinolinolato) aluminum hybrid polymer fibers by electrospinning, Materials Letters 60/24 (2006) 2969-2973.
  • [21] X. He, R. Arsat, A.Z. Sadek, W. Wlodarski, K. Kalantar-zadeh, J. Li, Electrospun PVP fibers and gas sensing properties of PVP/36° YX LiTaO3 SAW device, Sensors and Actuators B: Chemical 145 (2010) 674-679.
  • [22] A.C. Baptista, A.M. Botas, A.P.C. Almeida, A.T. Nicolau, B.P. Falcão, M.J. Soares, J.P. Leitão, R. Martins, J.P. Borges, I. Ferreira, Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers, Optical Materials 39 (2015) 278-281.
  • [23] A. Khaloo, M. Hossein Mobini, P. Hosseini, Influence of different types of nano-SiO2 particles on properties of high-performance concrete, Construction and Building Materials 113 (2016) 188-201.
  • [24] M. Yanilmaz, M. Dirican, X. Zhang, Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries, Electrochimica Acta 133 (2014) 501-508.
  • [25] X. Zong, Y. Cai, G. Sun, Y. Zhao, F. Huang, L. Song, Y. Hu, H. Fong, Q. Wei, Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval, Solar Energy Materials and Solar Cells 132 (2015) 183-190.
  • [26] Y. Cai, G. Sun, M. Liu, J. Zhang, Q. Wang, Q. Wei, Fabrication and characterization of capric-lauricpalmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval, Solar Energy 118 (2015) 87-95.
  • [27] W. Shang, J.H. Nuffer, V.A.M. Papandrea, W. Colón, R.W. Siegel, J.S. Dordick, Cytochrome c on silica nanoparticles: influence of nanoparticle size on protein structure, stability and activity, Small 5 (2009) 470-476.
  • [28] Y. Gu, B. Li, M. Chen, An experimental study on the cavitation of water with effects of SiO2 nanoparticles, Experimental Thermal and Fluid Science 79 (2016) 195-201.
  • [29] Q. Guo, D. Huang, X. Kou, W. Cao, L. Li, L. Ge, J. Li, Synthesis of disperse amorphous SiO2 nanoparticles via sol-gel process, Ceramics International 43 (2017) 192-196.
  • [30] M. Shahbazi, A. Bahari, S. Ghasemi, Structural and frequency-dependent dielectric properties of PVPSiO2-TMSPM hybrid thin films, Organic Electronics 32 (2016) 100-108.
  • [31] A.M. Abdelghany, M.Sh. Mekhail, E.M. Abdelrazek, M.M. Aboud, Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles, Journal of Alloys and Compounds 646 (2015) 326332.
  • [32] U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, G Xiong, Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, Physica Status Solidi (c) 3 (2006).
  • [33] C.M. Laot, E. Marand, H.T. Oyama, Spectroscopic characterization of molecular interdiffusion at a poly(vinyl pyrrolidone)/vinyl ester interface, Polymer 40 (1999) 1095-1108.
  • [34] E.M. Abdelrazek, I.S. Elashmawi, A. El-Khodary, A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide, Current Applied Physics 10 (2010) 607-613.
  • [35] G. Dingemans, C.A.A. van Helvoirt, D. Pierreux, W. Keuning, W.M.M. Kessels, Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties Journal of The Electrochemical Society 159 (2012) 277-285.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3cf153c-6a4c-4b06-b4a6-911668a1cebf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.