PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The aircraft piston engine conjugate heat transfer model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Maintaining high aircraft’s propulsion system reliability requires a good knowledge of engine’s heat transfer conditions at each engine running time. Even though the flow around the cylinder may be steady, the heat flux from the engine is not evenly distributed. This is caused by varied engine head and fins geometry and uneven heat transfer coefficient distribution. The lack of knowledge of the local heat transfer coefficient values and time coefficients for the transient heat transfer make it unfeasible to make an analytical model for a given geometry. One transient Computational Fluid Dynamics simulation does not solve the heat transfer fully. Only a conjugate simulation allows an in-depth analysis of a transient heat transfer. The Combustion and species transport fluid simulation is coupled to the temperature field solid simulation. This work presents the methods and results of such conjugate heat transfer simulation. The change of heat flux parameters in respect to time is shown. The results are verified by the real engine measurements.
Słowa kluczowe
EN
CFD   fluid   dynamics   conjugate   coupled   heat   transfer   engine   SI  
PL
CFD   płyn   dynamika   ciepło   transfer   silnik   SI  
Twórcy
autor
  • Lublin University of Technology Department of Thermodynamics, Fluid Mechanics and Aircraft Propulsion Systems Nadbystrzycka Street 36, 20-618 Lublin, Poland tel.: +48 81 5384250
Bibliografia
  • [1] Gupta, H. N., Fundamentals of internal combustion engines, XVII ed., PHI Learning, 2014.
  • [2] Borman, G., Nishiwaki, K., Internal-combustion engine heat transfer, Progress in Energy and Combustion Science, Vol. 13, No. 1, pp. 1-46, 1987.
  • [3] Wu, Y.-Y., Chen, B.-C., Hsieh, F.-C., Heat transfer model for small-scale air-cooled spark ignition four-stroke engines, International Journal of Heat and Mass Transfer, Vol. 49, Iss. 21-22, pp. 3895-3905, 2006.
  • [4] Hohenberg, G. F., Advanced approaches for heat transfer calculations, S.A.E., No. SP-449,1978.
  • [5] Sitkei, G., Ramanaiah, G., A rational approach for calculation of heat transfer in diesel engines, S.A.E., 1972.
  • [6] Woshni, G., A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, S.A.E, 1967.
  • [7] Tulwin, T., A Coupled Numerical Heat Transfer in the Transient Multicycle CFD Aircraft Engine Model, Procedia Engineering, Vol. 157, pp. 255-263, 2016.
  • [8] Šarić, S., Basara, B., Žunič, Z., Advanced near-wall modeling for engine heat transfer, International Journal of Heat and Fluid Flow, Vol. 63, pp. 205-211, 2017.
  • [9] Schmitt, M., et al., Investigation of wall heat transfer and thermal stratification under enginerelevant conditions using DNS, International Journal of Engine Research, Vol. 17, Iss. 1, pp. 63-75, 2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3cec9eb-2ed5-41c1-be97-1ce0f9a314cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.