PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On first-passage times for one-dimensional jump-diffusion processes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some problems of first-crossing times over two time-dependent boundaries for one-dimensional jump-diffusion processes are considered. The moments of the first-crossing times over each boundary are shown to be the solutions of certain partial differential-difference equations with suitable outer conditions. An approach based on the Laplace transform allows us to compare the moments of the first-crossing times of the jump-diffusion process with those of the corresponding simple-diffusion without jumps. For some examples where the boundaries are constant, the results are illustrated graphically.
Rocznik
Strony
399--423
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
  • Centro Yolterra and Dipartimento di Matematica, Universita Tor Vergata, 00133 Roma, Italy
Bibliografia
  • [1] M. Abundo, On some properties of one-dimensional diffusion processes on an interval, Probab. Math. Statist. 17 (2) (1997), pp. 277-310.
  • [2] M. Abundo, Some remarks on first-crossing-time problem for one-dimensional diffusion processes, in: Cybernetics and Systems '98, R. Trappl (Ed.), Austrian Society for Cybernetics Studies, Vienna 1998, pp. 384-389. On first-crossing times of one-dimensional diffusions over two time-dependent boundaries, Stochastic Anal. Appl. 18 (2) (2000), pp. 179-200.
  • [3] A. Buonocore, V. Giorno, A. G. Nobile and L. M. Ricciardi, On the two-boundary first-crossing-time problem for diffusion processes, J. Appl. Probab. 27 (1990), pp. 102-114.
  • [4] A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probabilities densities, Adv. in Appl. Probab. 19 (1987), pp. 784-800.
  • [5] D. A. Darling and A. J. F. Siegert, The first passage problem for a continuous Markov process, Ann. Math. Statist. 24 (1953), pp. 624-639.
  • [6] J. Durbin, Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test, J. Appl. Probab. 8 (1971), pp. 431-453.
  • [7] J. Durbin, The first-passage density of a continuous Gaussian process to a general boundary, J. Appl. Probab. 22 (1985), pp. 99-122.
  • [8] J. Durbin, The first-passage density of the Brownian motion process to a curved boundary, J. Appl. Probab. 29 (1992), pp. 291-304.
  • [9] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, New York-Heidelberg 1972. .
  • [10] V. Giorno, A. G. Nobile and L. M. Ricciardi, A symmetry-based constructive approach to probability densities for one-dimensional diffusion processes, J. Appl. Probab. 26 (1989), pp. 707-721.
  • [11] V. Giorno, A. G. Nobile, L. M. Ricciardi and S. Sato, On the evaluation of first-passage-time probability densities via non-singular integral equations, Adv. in Appl. Probab. 21 (1989), pp. 20-36.
  • [12] M. T. Giraudo and L. Sacerdote, Some remarks on first-passage-time for jump-diffusion processes, in: Cybernetics and Systems ’96, R. Trappl (Ed.), Austrian Society for Cybernetics Studies, Vienna 1996, pp. 518-523.
  • [13] R. Z. Has’minskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, 1980.
  • [14] L. Sacerdote, Some remarks on first-passage-time problems, in: Biomathematics and Related Computational Problems, L. M. Ricciardi (Ed.), Kluwer Academic Publishers, The Netherlands, 1988, pp. 567-579.
  • [15] H. C. Tuckwell, On the first-exit time problem for temporally homogeneous Markov processes, J. Appl. Probab. 13 (1976), pp. 39-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3ce56af-0c87-45a2-9fc1-7b64788f50dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.