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Abstract. Let D be a bounded C1,1-domain in Rd, d ≥ 2. The aim of this article is
twofold. The first goal is to give a new characterization of the Kato class of functions
K(D) that was defined by N. Zeddini for d = 2 and by H. Mâagli and M. Zribi for
d ≥ 3 and adapted to study some nonlinear elliptic problems in D. The second goal is
to prove the existence of positive continuous weak solutions, having the global behavior
of the associated homogeneous problem, for sufficiently small values of the nonnegative
constants λ and µ to the following system ∆u = λf(x, u, v), ∆v = µg(x, u, v) in D,
u = ϕ1 and v = ϕ2 on ∂D, where ϕ1 and ϕ2 are nontrivial nonnegative continuous
functions on ∂D. The functions f and g are nonnegative and belong to a class of
functions containing in particular all functions of the type f(x, u, v) = p(x)uαh1(v)
and g(x, u, v) = q(x)h2(u)vβ with α ≥ 1, β ≥ 1, h1, h2 are continuous on [0, ∞) and
p, q are nonnegative functions in K(D).
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1. INTRODUCTION

Let D be a bounded C1,1-domain of Rd (d ≥ 2). In this paper, we study the existence
of positive continuous solutions of the following semilinear elliptic system





∆u = λ f(·, u, v) in D (in the sense of distributions),
∆v = µ g(·, u, v) in D (in the sense of distributions),
u = ϕ1 and v = ϕ2 on ∂D,

(1.1)
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where ϕ1, ϕ2 are two nontrivial nonnegative continuous functions on the bound-
ary ∂D, λ ≥ 0, µ ≥ 0 and f, g are two nontrivial nonnegative functions defined
on D × [0, ∞) × [0, ∞). This problem was investigated, recently, in particular cases of
nonlinearities f , g by many authors (see for example [2,6, 11,19] and the references
therein). In [11], the authors considered the particular case where f(x, u, v) = p(x)g1(v)
and g(x, u, v) = q(x)f2(u), where f2, g1 are nonnegative continuous functions that
are both nondecreasing or both non-increasing and p, q are nonnegative measurable
functions belonging to the Kato class K(D) introduced and studied in [20] for d = 2
and in [15] for d ≥ 3. Under some conditions on ϕ1 and ϕ2, the existence of positive
continuous solutions having the global behavior of the associated homogeneous system
is established. System (1.1) has been also studied in [2] for the particular cases
f(x, u, v) = p(x)uαvr and g(x, u, v) = q(x)usvβ , where α ≥ 1, β ≥ 1, r ≥ 0, s ≥ 0
and p, q are two nonnegative measurable functions that belong to the class K(D).
In [19], the author considered the case where the nonnegative nonlinearities f and g
are both nondecreasing with respect to the second and the third variables or both
non increasing with respect to the second and the third variables and such that for
each c1, c2 > 0 the functions f(·, c1, c2) and g(·, c1, c2) are in the class K(D). Under
a condition of positivity of two constants defined by means of f , g, ϕ1, ϕ2 and exploiting
the monotonicity assumption of f and g, the author extends the results of [11] by
proving the existence of positive continuous solutions for (1.1). This also was done
by investigating the properties of the Kato class K(D).

Our aim in this paper is twofold. The first goal is to give a new characterization of
the Kato class K(D) as it will be stated in Theorem 2.2 in the sequel. This explains
in a certain manner the optimality of the 3G-inequality (2.4), satisfied by the Green
function and established in [13] and [17]. The second goal is to extend the results of
[2, 11,19] to a class of nonlinearities f and g including in particular those where f is
nondecreasing with respect to u but not necessarily monotone with respect to v and g
is nondecreasing with respect to v but not necessarily monotone with respect to u.
The proof will differs from those in [11] and [19]. Namely, we will establish and exploit
an existence result of a positive continuous solution for the problem

{
∆u = λf(x, u) in D (in the sense of distributions),
u = ϕ on ∂D,

(1.2)

where λ ≥ 0, ϕ is a nontrivial nonnegative continuous function on ∂D and the function
f belongs to a class of functions containing in particular those of the form p(x)uα

with α ≥ 1 and this will be an extension of the results of [18] established, for d ≥ 3,
in the case where the variables are separated and f(x, u) = p(x)h(u).

We note that different types of weak solutions for problems that are more general
than (1.2) can be defined and existence results for these solutions can established by
different methods such as variational methods or topological methods (see [12,16]),
or via global invertibility (see [4]). These problems are also treated in the case of the
lack of compactness (see [10]). Here we restrict ourselves to the case of continuous
weak solutions combining topological and approximation methods and potential theory
tools.
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Our paper is organized as follows. Section 2 is devoted to give a new characterization
of the Kato class K(D) and to recall some properties of this class that will be used
in the study of (1.2) and (1.1). In Section 3, we prove the existence of a positive
continuous solution for (1.2). The last section is devoted to the study of the existence
of a positive continuous solutions for the system (1.1).

Next, we give some notations that will be used in the sequel. We denote by B(D)
the set of all Borel measurable functions in D, by B+(D) the set of nonnegative ones
and by Bb(D) the set of bounded ones. We denote also by C0(D) the set of continuous
functions in D having limit zero at the boundary ∂D and by C(D) be the set of
all functions in B(D) that are continuous in D. Let GD be the Green function of
the Laplace operator in D with Dirichlet boundary conditions. For any p ∈ B+(D),
we denote by DGp the Green potential of p defined on D by

DGp(x) =
∫

D

GD(x, y)p(y) dy

and we recall that if p ∈ L1
loc(D) and DGp ∈ L1

loc(D), then we have in the sense of
distributions (see [8, p. 52])

∆(DGp) = −p in D. (1.3)

For any nonnegative continuous function ϕ on ∂D, we denote by HDϕ the unique
solution u ∈ C2(D) ∩ C(D) of the Dirichlet problem

{
∆u = 0 in D,

u = ϕ on ∂D.

Let (Xt)t≥0 be the canonical Brownian motion defined on C
(
[0, ∞);Rd

)
,

P x be the probability measure on the Brownian continuous paths starting at x
and τD be the exist time of D. For any q ∈ B+(D), we define (see [7] or [8, p. 84]),
the subordinate Green kernel DGq by

DGq(p)(x) = 1
2 Ex




τD∫

0

e
− 1

2

∫ t

0
q(Xs)ds

p(Xt) dt


 for p ∈ B(D), (1.4)

where Ex is the expectation on P x. Moreover, for q ∈ B+(D) such that DGq < ∞
we have (see [5, 8, 14]) the resolvent equation

DG = DGq + DGq

(
q DG

)
. (1.5)

So for each u ∈ B(D) such that DG(q|u|) < ∞, we have
[
I + DG(q ·)

] [
I − DGq(q ·)

]
u =

[
I − DGq(q ·)

]
[I + DG(q ·)]u = u (1.6)

and for every u ∈ B+(D) we have

0 ≤ DGq(u) ≤ DG(u). (1.7)
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We close this section by adopting the following notation. If S is a nonempty set and
f , g are two nonnegative functions defined on S, we write f ∼ g if there exist a positive
constant C such that 1

C f(x) ≤ g(x) ≤ C f(x) for every x ∈ S. We note also that as
long of this paper the positive constant C may vary from line to line.

2. THE KATO CLASS OF FUNCTIONS

In [21], Zhao have established the following important estimates and inequalities for
the Green function GD of a C1,1-bounded domain D. Let ρ0(x) = dis(x, ∂D) be the
Euclidean distance from x to ∂D. Then Zhao proved, for d ≥ 3, that there exists
a positive constant C such that for each x, y, z ∈ D.

ρ0(y)
ρ0(x)GD(x, y) ≤ C

∥x − y∥d−2 , (2.1)

GD(x, y) ∼ 1
∥x − y∥d−2 min

(
1,

ρ0(x)ρ0(y)
∥x − y∥2

)
(2.2)

and
GD(x, z)GD(z, y)

GD(x, y) ≤ C

[
1

∥x − z∥d−2 + 1
∥y − z∥d−2

]
. (2.3)

Inequality (2.3) has been improved by Kalton and Verbitsky in [13] for d ≥ 3 and
by Selmi in [17] for d = 2. More precisely, they proved that there exists a positive
constant C0 such that

GD(x, z)GD(z, y)
GD(x, y) ≤ C0

[
ρ0(z)
ρ0(x)GD(x, z) + ρ0(z)

ρ0(y)GD(y, z)
]

. (2.4)

This was exploited by Zeddini in [20] for d = 2 and by Mâagli and Zribi in [15] for
d ≥ 3 to define a new Kato class on the bounded domain D which has been adapted
to study some semilinear elliptic boundary value problems using some potential theory
tools. More precisely, this class was defined as follows.
Definition 2.1 ([15,20]). A measurable function q belongs to the Kato class K(D) if
q satisfies the following condition

lim
r→0


sup

x∈D

∫

D∩B(x,r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)|dz


 = 0. (2.5)

Our main goal in this section is to give a new characterization of this class of
functions by means of the left hand side term of inequality (2.4). This was motivated
by giving an answer to the question of comparing the Kato class defined by means
of (2.5) with an eventual new class K0(D) that may be defined by (2.6) below, after
noticing that the properties satisfied by functions in K(D) are also satisfied by those
in K0(D). Thus we prove here, in a nontrivial manner, the equality between these two
classes.
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Theorem 2.2. Let q be a Borel measurable function in D. Then q ∈ K(D) if and
only if

lim
r→0


 sup

(x,y)∈D×D

∫

D∩(B(x,r)∪B(y,r))

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz


 = 0. (2.6)

To prove this theorem we need to recall and establish some preliminary results.

Proposition 2.3 ([15,17]). For x, y ∈ D we have

GD(x, y) ∼





Log
(

1 + ρ0(x)ρ0(y)
∥x−y∥2

)
if d = 2,

ρ0(x)ρ0(y)
∥x−y∥d−2(∥x−y∥2+ρ0(x)ρ0(y)) if d ≥ 3,

(2.7)

and
ρ0(x)ρ0(y) ≤ C GD(x, y). (2.8)

The following lemma will be also used.

Lemma 2.4. Let x, y ∈ D. Then we have the following properties:

(1) If ρ0(x)ρ0(y) ≤ ∥x − y∥2, then

max(ρ0(x), ρ0(y)) ≤ 1 +
√

5
2 ∥x − y∥.

(2) If ∥x − y∥2 ≤ ρ0(x)ρ0(y), then for every z ∈ Dc we have

3 −
√

5
2 ∥y − z∥ ≤ ∥x − z∥ ≤ 3 +

√
5

2 ∥y − z∥.

In particular, we have

3 −
√

5
2 ρ0(y) ≤ ρ0(x) ≤ 3 +

√
5

2 ρ0(y).

(3) 1
2

(
∥x − y∥2 + ρ2

0(x) + ρ2
0(y)

)
≤ ∥x − y∥2 + ρ0(x)ρ0(y) ≤ ∥x − y∥2 + ρ2

0(x) + ρ2
0(y).

Proof. (1) and (2) were proved in [3].
(3) Squaring the well known inequality |ρ0(x) − ρ0(y)| ≤ ∥x − y∥ we obtain

ρ2
0(x) + ρ2

0(y) ≤ ∥x − y∥2 + 2ρ0(x)ρ0(y).

This together with the fact that ab ≤ a2 + b2 gives

|x − y∥2 + ρ2
0(x) + ρ2

0(y) ≤ 2
[
∥x − y∥2 + ρ0(x)ρ0(y)

]

≤ 2
[
∥x − y∥2 + ρ2

0(x) + ρ2
0(y)

]
.

This completes the proof.
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The following result is the key of the proof of the new characterization of the
class K(D).
Proposition 2.5. There exists a constant C > 0 such that for all r > 0 and all
x, y ∈ D we have

∫

D∩(B(x,r)∪B(y,r))

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz ≤ C

∫

D∩B(x,3r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)| dz

+ C

∫

D∩B(y,3r)

ρ0(z)
ρ0(y)GD(y, z)|q(z)| dz.

Proof. Let r > 0 and x, y ∈ D. Then we have
∫

D∩(B(x,r)∪B(y,r))

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

=
∫

D∩B(x,r)∩B(y,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

+
∫

D∩B(x,r)∩Bc(y,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

+
∫

D∩B(y,r)∩Bc(x,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

= I1(x, y) + I2(x, y) + I3(x, y).

Using the inequality (2.4), we obtain

I1(x, y) :=
∫

D∩B(x,r)∩B(y,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

≤ C0

∫

D∩B(x,r)∩B(y,r)

[
ρ0(z)
ρ0(x)GD(x, z) + ρ0(z)

ρ0(y)GD(y, z)
]

|q(z)|dz

≤ C0

∫

D∩B(x,r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)|dz

+ C0

∫

D∩B(y,r)

ρ0(z)
ρ0(y)GD(y, z)|q(z)|dz.

Next, we estimate I2(x, y) and I3(x, y). To this aim we will discuss two cases:
Case 1. B(x, r) ∩ B(y, r) ̸= ∅.
Choose z0 ∈ B(x, r) ∩ B(y, r). Then for every z ∈ B(x, r) ∩ Bc(y, r) we have

∥z − y∥ ≤ ∥z − x∥ + ∥x − z0∥ + ∥z0 − y∥ ≤ 3r.
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Similarly for every z ∈ B(y, r) ∩ Bc(x, r) we have

∥z − x∥ ≤ ∥z − y∥ + ∥y − z0∥ + ∥z0 − x∥ ≤ 3r.

Hence
B(x, r) ∩ Bc(y, r) ⊂ B(x, r) ∩ B(y, 3r)

and
B(y, r) ∩ Bc(x, r) ⊂ B(y, r) ∩ B(x, 3r).

So we obtain

I2(x, y) :=
∫

D∩B(x,r)∩Bc(y,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

≤
∫

D∩B(x,r)∩B(y,3r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

≤ C0

∫

D∩B(x,r)∩B(y,3r)

[
ρ0(z)
ρ0(x)GD(x, z) + ρ0(z)

ρ0(y)GD(y, z)
]

|q(z)|dz

≤ C0

∫

D∩B(x,r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)|dz

+ C0

∫

D∩B(y,3r)

ρ0(z)
ρ0(y)GD(y, z)|q(z)|dz

and

I3(x, y) :=
∫

D∩B(y,r)∩Bc(x,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

≤
∫

D∩B(y,r)∩B(x,3r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

≤ C0

∫

D∩B(y,r)∩B(x,3r)

[
ρ0(z)
ρ0(x)GD(x, z) + ρ0(z)

ρ0(y)GD(y, z)
]

|q(z)|dz

≤ C0

∫

D∩B(x,3r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)|dz

+ C0

∫

D∩B(y,r)

ρ0(z)
ρ0(y)GD(y, z)|q(z)|dz.

Case 2. B(x, r) ∩ B(y, r) = ∅.
In this case B(x, r) ⊂ Bc(y, r) and B(y, r) ⊂ Bc(x, r). For every z ∈ B(x, r) we have

∥y − z∥ ≤ ∥y − x∥ + ∥x − z∥ ≤ ∥y − x∥ + r ≤ 2∥x − y∥
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and
∥x − y∥ ≤ ∥x − z∥ + ∥y − z∥ ≤ r + ∥y − z∥ ≤ 2∥y − z∥.

So, in this case
1
2∥y − z∥ ≤ ∥x − y∥ ≤ 2∥y − z∥. (2.9)

Similarly for every z ∈ B(y, r) we have

∥x − z∥ ≤ ∥x − y∥ + ∥y − z∥ ≤ ∥x − y∥ + r ≤ 2∥x − y∥
and

∥x − y∥ ≤ ∥x − z∥ + ∥y − z∥ ≤ ∥x − z∥ + r ≤ 2∥x − z∥.

Also, in this case
1
2∥x − z∥ ≤ ∥x − y∥ ≤ 2∥x − z∥. (2.10)

Now, using (2.7) we obtain

GD(x, z)GD(z, y)
GD(x, y) ∼





Log

(
1 + ρ0(y)ρ0(z)

∥z − y∥2

)

Log
(

1 + ρ0(x)ρ0(y)
∥x−y∥2

) GD(x, z) if d = 2,

∥x − y∥d−2

∥z − y∥d−2
(∥x − y∥2 + ρ0(x)ρ0(y))
(∥z − y∥2 + ρ0(z)ρ0(y))

ρ0(z)
ρ0(x) GD(x, z) if d ≥ 3,

and

GD(x, z)GD(z, y)
GD(x, y) ∼





Log
(

1 + ρ0(x)ρ0(z)
∥z−x∥2

)

Log
(

1 + ρ0(x)ρ0(y)
∥x−y∥2

) GD(y, z) if d = 2

∥x − y∥d−2

∥z − x∥d−2
(∥x − y∥2 + ρ0(x)ρ0(y))
(∥z − x∥2 + ρ0(z)ρ0(x))

ρ0(z)
ρ0(y) GD(y, z) if d ≥ 3.

So we will discuss two subcases.
Subcase 1. If ρ0(x)ρ0(y) ≤ ∥x − y∥2.
In this case we have ∥x − y∥2 + ρ0(x)ρ0(y) ≤ 2∥x − y∥2. So for d ≥ 3, we use this fact
and (2.9) to obtain

∥x − y∥d−2

∥z − y∥d−2
(∥x − y∥2 + ρ0(x)ρ0(y))
(∥z − y∥2 + ρ0(z)ρ0(y)) ≤ ∥x − y∥d−2(∥x − y∥2 + ρ0(x)ρ0(y))

∥z − y∥d

≤ 2∥x − y∥d

∥z − y∥d
≤ 2d+1.

And for d = 2, we use (2.9) and the inequalities 1
2 t ≤ Log(1 + t) for t ∈ [0, 1] and

Log(1 + t) ≤ t for t ≥ 0 to obtain

Log
(

1 + ρ0(y)ρ0(z)
∥z−y∥2

)

Log
(

1 + ρ0(x)ρ0(y)
∥x−y∥2

) ≤ 2 ∥x − y∥2

ρ0(x)ρ0(y)
ρ0(y)ρ0(z)
∥z − y∥2 ≤ 8 ρ0(z)

ρ0(x) .
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Consequently, for every z ∈ B(x, r) we have

GD(x, z)GD(z, y)
GD(x, y) ≤ C

ρ0(z)
ρ0(x)GD(x, z)

and

I2(x, y) =
∫

D∩B(x,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz ≤ C

∫

D∩B(x,r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)|dz.

Similarly for every z ∈ B(y, r) we obtain by using (2.10) that

GD(x, z)GD(z, y)
GD(x, y) ≤ C

ρ0(z)
ρ0(y)GD(y, z)

and

I3(x, y) =
∫

D∩B(y,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz ≤ C

∫

D∩B(y,r)

ρ0(z)
ρ0(y)GD(y, z)|q(z)|dz.

Subcase 2. If ∥x − y∥2 ≤ ρ0(x)ρ0(y).
In this case we obtain from Lemma 2.4 that

3 −
√

5
2 ρ0(y) ≤ ρ0(x) ≤ 3 +

√
5

2 ρ0(y), (2.11)

and we will treat the cases d ≥ 3 and d = 2 separately. If d ≥ 3, then we deduce from
(2.11), (2.9) and property (3) of Lemma 2.4 that for every z ∈ B(x, r) we have

∥x − y∥d−2

∥z − y∥d−2
(∥x − y∥2 + ρ0(x)ρ0(y))
(∥z − y∥2 + ρ0(z)ρ0(y)) ≤ 2d−2 ∥x − y∥2 + ρ0(x)ρ0(y)

∥z − y∥2 + ρ0(z)ρ0(y)

≤ 2d ∥x − y∥2 + ρ2
0(x) + ρ2

0(y)
∥z − y∥2 + ρ2

0(z) + ρ2
0(y)

≤ 2d

(
1 +

(
3+

√
5

2

)2) (
∥x − y∥2 + ρ2

0(y)
)

∥z − y∥2 + ρ2
0(z) + ρ2

0(y)

≤ 2d
(9 + 3

√
5

2

)∥x − y∥2 + ρ2
0(y)

∥z − y∥2 + ρ2
0(y)

≤ 2d+1
(

9 + 3
√

5
)

.

Consequently, for every z ∈ B(x, r) we have

GD(x, z)GD(z, y)
GD(x, y) ≤ C

ρ0(z)
ρ0(x)GD(x, z)
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and

I2(x, y) =
∫

D∩B(x,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

≤ C

∫

D∩B(x,r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)|dz.

Similarly, for z ∈ B(y, r) we use (2.10) and similar arguments as above to obtain

GD(x, z)GD(z, y)
GD(x, y) ≤ C

ρ0(z)
ρ0(y)GD(y, z)

and

I3(x, y) =
∫

D∩B(y,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

≤ C

∫

D∩B(y,r)

ρ0(z)
ρ0(y)GD(y, z)|q(z)|dz.

Finally, for d = 2 we will discuss two subcases.

(i) If ∥x − z∥2 ≤ ρ0(x)ρ0(z) or ∥y − z∥2 ≤ ρ0(y)ρ0(z). Then taking into account
(2.11) and using Lemma 2.4 we obtain in this case that

3 −
√

5
2 ρ0(x) ≤ ρ0(z) ≤ 3 +

√
5

2 ρ0(x)

and
(3 −

√
5

2

)2
ρ0(y) ≤ ρ0(z) ≤

(3 +
√

5
2

)2
ρ0(y) ,

or

3 −
√

5
2 ρ0(y) ≤ ρ0(z) ≤ 3 +

√
5

2 ρ0(y)

and
(3 −

√
5

2

)2
ρ0(x) ≤ ρ0(z) ≤

(3 +
√

5
2

)2
ρ0(x).

Using these facts, (2.9) and the fact that for α > 0 and t ≥ 0 we have

min(1, α) Log(1 + t) ≤ Log(1 + αt) ≤ max(1, α) Log(1 + t),
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we obtain for z ∈ B(x, r) that

Log
(

1 + ρ0(y)ρ0(z)
∥z−y∥2

)

Log
(

1 + ρ0(x)ρ0(y)
∥x−y∥2

) ≤
Log

(
1 +

(
3+

√
5

2

)
ρ0(x)ρ0(z)

∥z−y∥2

)

Log

(
1 +

(
3−

√
5

2

)2
ρ0(x)ρ0(z)
4 ∥z−y∥2

)

≤
(3 +

√
5

2

) 16
(

3 −
√

5
)2

Log
(

1 + ρ0(x)ρ0(z)
∥z−y∥2

)

Log
(

1 + ρ0(x)ρ0(z)
∥z−y∥2

)

≤
(

3 +
√

5
)3

≤
(

3 +
√

5
)3 (3 +

√
5

2

)2 ρ0(z)
ρ0(x) .

Hence for every z ∈ B(x, r) we obtain

GD(x, z)GD(z, y)
GD(x, y) ≤ C

ρ0(z)
ρ0(x)GD(x, z)

and

I2(x, y) =
∫

D∩B(x,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz ≤ C

∫

D∩B(x,r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)|dz.

Similarly, for z ∈ B(y, r) we use (2.10) and similar arguments as above to obtain

GD(x, z)GD(z, y)
GD(x, y) ≤ C

ρ0(z)
ρ0(y)GD(y, z)

and

I3(x, y) =
∫

D∩B(y,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz ≤ C

∫

D∩B(y,r)

ρ0(z)
ρ0(y)GD(y, z)|q(z)|dz.

(ii) If ∥x − z∥2 ≥ ρ0(x)ρ0(z) and ∥y − z∥2 ≥ ρ0(y)ρ0(z), then in this case we have
max(ρ0(x), ρ0(z)) ≤ ∥x − z∥ and max(ρ0(y), ρ0(z)) ≤ ∥y − z∥. Hence it follows from
the inequalities t

1+t ≤ Log(1 + t) ≤ t for t ≥ 0, that

ρ0(x)ρ0(y)
∥x − y∥2 + ρ0(x)ρ0(y) ≤ Log

(
1 + ρ0(x)ρ0(y)

∥x − y∥2

)
.
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Hence

Log
(

1 + ρ0(y)ρ0(z)
∥z−y∥2

)

Log
(

1 + ρ0(x)ρ0(y)
∥x−y∥2

) ≤ ∥x − y∥2 + ρ0(x)ρ0(y)
∥y − z∥2

ρ0(z)
ρ0(x)

≤
∥x − y∥2 +

(
3+

√
5

2

)
(ρ0(y))2

∥y − z∥2
ρ0(z)
ρ0(x)

≤
(3 +

√
5

2

) ∥x − y∥2 + (ρ0(y))2

∥y − z∥2
ρ0(z)
ρ0(x)

≤
(3 +

√
5

2

) ∥x − y∥2 + ∥y − z∥2

∥y − z∥2
ρ0(z)
ρ0(x)

and similarly

Log
(

1 + ρ0(x)ρ0(z)
∥x−z∥2

)

Log
(

1 + ρ0(x)ρ0(y)
∥x−y∥2

) ≤
(3 +

√
5

2

) ∥x − y∥2 + ∥x − z∥2

∥x − z∥2
ρ0(z)
ρ0(y) .

So, using (2.9) we obtain for z ∈ B(x, r) we get

GD(x, z)GD(z, y)
GD(x, y) ≤ C

ρ0(z)
ρ0(x)GD(x, z)

and

I2(x, y) =
∫

D∩B(x,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz ≤ C

∫

D∩B(x,r)

ρ0(z)
ρ0(x)GD(x, z)|q(z)|dz.

Similarly, for z ∈ B(y, r) we use (2.10) and similar arguments as above to obtain

GD(x, z)GD(z, y)
GD(x, y) ≤ C

ρ0(z)
ρ0(y)GD(y, z)

and

I3(x, y) =
∫

D∩B(y,r)

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz ≤ C

∫

D∩B(y,r)

ρ0(z)
ρ0(y)GD(y, z)|q(z)|dz.

This completes the proof of the proposition.

Proof of Theorem 2.2. Assume that q ∈ K(D). Then by Proposition 2.5, we deduce
that (2.6) is satisfied. To prove the converse, we deduce from (2.2), (2.7) and (2.8) that

GD(x, z)GD(z, y)
GD(x, y) |q(z)| = GD(z, y)

GD(x, y) GD(x, z)|q(z)|

≥ C∥x − y∥d ρ0(z)
ρ0(x) GD(x, z)|q(z)|.
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Let r > 0 and x, y ∈ D. Then

C∥x − y∥d

∫

D∩B(x,r)

ρ0(z)
ρ0(x) GD(x, z)|q(z)|dz

≤
∫

D∩(B(x,r)∪B(y,r))

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz

≤ sup
(ξ,ζ)∈D×D

∫

D∩(B(ξ,r)∪B(ζ,r))

GD(ξ, z)GD(z, ζ)
GD(ξ, ζ) |q(z)|dz.

Let L be the diameter of D. Then for every x ∈ D, there exists y = yx ∈ D such that
∥x − yx∥ ≥ L

4 . If this is not true, then there exists x0 ∈ D such that for every y ∈ D

we have ∥x0 − y∥ ≤ L
4 . So we obtain D ⊂ B(x0, L

4 ), which gives a contradiction with
the definition of the diameter L. Using this fact we deduce that for every r > 0 and
x ∈ D we have

C

(
L

4

)d ∫

D∩B(x,r)

ρ0(z)
ρ0(x) GD(x, z)|q(z)|dz

≤ sup
(ξ,ζ)∈D×D

∫

D∩(B(ξ,r)∪B(ζ,r))

GD(ξ, z)GD(z, ζ)
GD(ξ, ζ) |q(z)|dz.

This shows that if (2.6) is satisfied then (2.5) is also satisfied. The proof is complete.

Next, we recall some important properties that will be used in the study of the
boundary value problems (1.2) and (1.1). The proofs of these properties can be found
in references [15,20] and [2].

Proposition 2.6. Let q ∈ K(D). Then the following assertions hold.

(1) Letting r tends to infinity in Proposition 2.5 and using the results established in
[20] and [15] stating that supx∈D

∫
D

ρ0(z)
ρ0(x) GD(x, z)|q(z)|dz < ∞, we deduce that

ND(q) = sup
(x,y)∈D×D

∫

D

GD(x, z)GD(z, y)
GD(x, y) |q(z)|dz < ∞. (2.12)

(2) For any nonnegative superharmonic function h and every x ∈ D we have
∫

D

GD(x, z)h(z)|q(z)|dz ≤ ND(q)h(x). (2.13)

(3) The function y −→ ρ0(y)q(y) ∈ L1(D). In particular q ∈ L1
loc(D).

(4) The Green potential DGq belongs to C0(D).
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The following results will also play an important role in the sequel.

Proposition 2.7. Let h be a nonnegative superharmonic function in D and q be
a nonnegative functions in K(D). Then for each x ∈ D such that 0 < h(x) < ∞, we
have

exp(−ND(q)) h(x) ≤ h(x) − DGq(q h)(x) ≤ h(x). (2.14)

Proposition 2.8. Let q be a nonnegative function in K(D). Then the family of
functions

Fq = {DGp ; |p| ≤ q}
is equicontinuous in D and consequently it is relatively compact in C0(D).

We close this section by giving a fundamental example of functions belonging to
K(D) that was given in [20] and [15].

Example 2.9. Let β ∈ R and define q(x) = 1
(ρ0(x))β

for x ∈ D. Then

q ∈ K(D) if and only if β < 2.

3. EXISTENCE OF POSITIVE SOLUTIONS
FOR SOME SEMILINEAR ELLIPTIC EQUATIONS

The aim of this section is to study the existence of positive continuous weak solutions of
the following semilinear elliptic Dirichlet problem (1.2). First we begin by introducing
the notion of continuous weak solutions for this problem.

Denote by C∞
c (D) the set of all infinitely differentiable functions in D with compact

support in D.

Definition 3.1. A function u is called a continuous weak solution of (1.2) if

(i) u ∈ C(D,R),
(ii)

∫

D

u(x)∆φ(x) − λf(x, u(x))φdx = 0 for every φ ∈ C∞
c (D),

(iii) lim
x→ξ∈∂D

x∈D

u(x) = ϕ(ξ).

The following result ensure the uniqueness of an eventual continuous weak solution
for (1.2) in the case where f ≥ 0 and nondecreasing and continuous with respect to
the second variable.

Proposition 3.2. Let f : D × [0, ∞) −→ [0, ∞) be a Borel measurable function such
that f(·, c) ∈ L1

loc(D) for each c ≥ 0 and for each x ∈ D the function t → f(x, t) is
nondecreasing and continuous on [0, ∞). For any nontrivial nonnegative continuous
function ϕ on the boundary ∂D and λ ≥ 0, problem (1.2) has at most one nonnegative
continuous weak solution.
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Proof. Assume that there exist two nonnegative continuous weak solutions u1, u2 of
(1.2) with u1 ̸= u2. We suppose that there exists x0 ∈ D such that u1(x0) > u2(x0).
Put w = u1 − u2 and denote by E = {x ∈ D : w(x) > 0}. Then E is a nonempty
open set and from the fact that f is nondecreasing with respect to the second variable,
we obtain

{
∆w = λ [f(x, u1(x)) − f(x, u2(x))] ≥ 0 in E (in the sense of distributions),
w ≤ 0 on ∂E.

Hence by the weak maximum principle (see [9, p. 333–334]) we get w ≤ 0 in E. This
contradicts the definition of E and achieves the proof.

In order to state an existence result for (1.2) for λ sufficiently small, we assume
that f satisfy the following hypotheses:

(H1) The function f(·, 0) belongs to K(D).
(H2) f : D × [0, ∞) −→ [0, ∞) is Borel measurable such that for each x ∈ D, the map

t → f(x, t) is continuous and satisfying the following condition: For each M > 0,
there exists a nonnegative function qM ∈ K(D) such that for each x ∈ D, the
map t → qM (x) t − f(x, t) is nondecreasing on [0, M ].

(H3) σ0 := inf
x∈D

[
HDϕ(x)

DGf(·, 0)(x)

]
> 0.

Remarks 3.3.

(1) The conditions (H1) and (H2) are satisfied in the particular case f(x, t) = p(x) g(t),
where p ∈ K(D) and g(t) = tα, α ≥ 1 or more generally g : [0, ∞) → [0, ∞) is
continuous and satisfying for each M > 0, there exists a constant b = b(M) ≥ 0
such that g(t) − g(s) ≤ b (t − s) for 0 ≤ s < t ≤ M . Indeed in this case (H2) is
satisfied with qM = b(M) p.

(2) Let p ∈ K(D) and g(t) = 1
1+

√
t
. Then the function f(x, t) = p(x) g(t) satisfy (H2)

with qM = 0 despite the derivative g′(t) = −1
2

√
t(1+

√
t)2 for t > 0 is not bounded

near zero.
(3) The hypothesis (H3) is satisfied in the particular case where f(·, 0) = 0 with

σ0 = ∞.

Example 3.4. Let α ≥ 1, and β, γ ∈ R such that β < 2 + min(γ, 0). Define

f(x, t) = 1
(ρ0(x))β

(ρ0(x) + t)γ
tα for (x, t) ∈ D × [0, ∞).

Then f satisfy hypotheses (H1)–(H3). Indeed, since f(x, 0) = 0 then (H1) is satisfied
and (H3) is satisfied with σ0 = ∞. Next we prove that f satisfy (H2). To this aim we
consider M > 0, 0 ≤ s ≤ t ≤ M and η ∈ [s, t] such that

(ρ0(x) + t)γ
tα − (ρ0(x) + s)γ

sα = (t−s)
[
γ(ρ0(x) + η)γ−1 ηα + α(ρ0(x) + η)γ ηα−1]

.

We will discuss two cases.
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Case 1. γ ≥ 0.
In this case since γ + α − 1 ≥ 0, so

(ρ0(x) + η)γ−1 ηα ≤ max
(
(L + η)γ−1, ηγ−1)

ηα

= max
(
(L + η)γ−1ηα , ηγ+α−1)

≤ max
(
(L + η)γ+α−1 , ηγ+α−1)

= (L + M)γ+α−1
.

Hence
f(x, t) − f(x, s) ≤ (α + γ)(L + M)γ+α−1

(ρ0(x))β
(t − s).

Consequently, (H3) is satisfied with

qM (x) = (α + γ)(L + M)γ+α−1

(ρ0(x))β
.

Case 2. γ < 0.
In this case we have

γ(ρ0(x) + η)γ−1 ηα + α(ρ0(x) + η)γ ηα−1 ≤ α(ρ0(x) + η)γ ηα−1

≤ αMα−1(ρ0(x))γ

Hence
f(x, t) − f(x, s) ≤ αMα−1

(ρ0(x))β−γ
(t − s).

Since β < 2 + γ, then 1
(ρ0(x))β−γ ∈ K(D) and consequently (H3) is satisfied with

qM (x) = αMα−1

(ρ0(x))β−γ
.

Combining Cases 1 and 2 we deduce that (H2) is satisfied with

qM (x) = [α + max(γ, 0)] (L + M)α−1+max(γ,0)

(ρ0(x))β−min(γ,0) .

Example 3.5. As it assumed as long of this paper D is a bounded C1,1-domain and
we consider β , γ ∈ R such that β < min(1 + γ, 2). Define

f(x, t) = 1
(ρ0(x))β

(ρ0(x) + t)γ for (x, t) ∈ D × [0, ∞).

Then f satisfy hypotheses (H1)–(H3). Indeed, since β − γ < 1 then f(x, 0) =
1

(ρ0(x))β−γ ∈ K(D) and (H1) is satisfied. To prove that f verify (H2), we consider
M > 0, 0 ≤ s ≤ t ≤ M and η ∈ [s, t] such that

(ρ0(x) + t)γ − (ρ0(x) + s)γ = (t − s)
[
γ(ρ0(x) + η)γ−1]

.
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We will discuss three cases.
Case 1. γ ≤ 0.
In this case we have f(x, t) − f(x, s) ≤ 0. So we can take qM = 0.
Case 2. γ ≥ 1.
In this case we have

f(x, t) − f(x, s) = γ(η + ρ0(x))γ−1

(ρ0(x))β
(t − s) ≤ γ(L + M)γ−1

(ρ0(x))β
(t − s).

So we can take
qM = γ(L + M)γ−1

(ρ0(x))β
∈ K(D).

Case 3. 0 < γ < 1.
In this case

f(x, t) − f(x, s) = γ(η + ρ0(x))γ−1

(ρ0(x))β
(t − s) ≤ γ

(ρ0(x))β−γ+1 (t − s).

Since β < 1 + γ, then
qM = γ

(ρ0(x))β−γ+1 ∈ K(D)

and this shows that (H2) is satisfied.

Finally we prove that f satisfy (H3). Since f(x, 0) = 1
(ρ0(x))β−γ

and β − γ < 1, then

it follows from Proposition 5 in [15] that there exists C1 > 0 such that
1

C1
ρ0(x) ≤ DGf(·, 0)(x) ≤ C1 ρ0(x)

for every x ∈ D. On the other hand, since D is a bounded C1,1-domain and HDϕ is
positive and harmonic in D, then it follows from Corollary 6.2 in [1] that there exists
C2 > 0 depending only on ϕ and D such that C2 ρ0(x) ≤ HDϕ(x) for every x ∈ D.
Consequently for x ∈ D we have

HDϕ(x)
DGf(·, 0)(x) ≥ C2 ρ0(x)

C1 ρ0(x) = C2
C1

> 0

and then σ0 > 0.
Remark 3.6. If f satisfies (H1)–(H2), then for each c > 0 we have f(·, c) ∈ K(D).
Indeed, for c > 0 we deduce from (H2) that there exists qc ∈ K(D) such that for each
x ∈ D and 0 ≤ t1 ≤ t2 ≤ c we have

t1 qc(x) − f(x, t1) ≤ t2 qc(x) − f(x, t2).

By taking t1 = 0 and t2 = c we obtain

0 ≤ f(x, c) ≤ f(x, 0) + c qc(x).

This together with (H1) shows that f(·, c) ∈ K(D).
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The second main result of this paper will be an extension of a result established
in [18] for the case f(x, u) = p(x)h(u). The proof in [18] will be adapted here and
we will give it for the sake of completeness.

Theorem 3.7. Let ϕ be a nontrivial nonnegative continuous function on ∂D and
assume that hypotheses (H1), (H2) and (H3). Then there exists λ0 > 0 such that for
λ ∈ [0, λ0), problem (1.2) has a positive continuous weak solution u satisfying the
following global behavior

cλ HDϕ(x) ≤ u(x) ≤ HDϕ(x) for each x ∈ D, (3.1)

where cλ ∈ [0, 1).

Proof. Put
M = ∥HDϕ∥∞ = sup

x∈D

|HDϕ(x)|.

Since HDϕ is harmonic in D with boundary value ϕ, then it follows from the maximum
principle that

M = ∥ϕ∥∞ = sup
x∈∂D

|ϕ(x)|.

Since ϕ ≠ 0, then M > 0. From hypothesis (H2) there exists q = qM ∈ K(D) such
that for each x ∈ D and 0 ≤ s < t ≤ M we have

f(x, t) − f(x, s)
t − s

≤ qM (x).

Consider the function θ : λ → λ exp (λND(q)). Then θ is a bijection from [0, ∞)
to [0, ∞). Put λ0 = θ−1(σ0) > 0, with the convention that λ0 = ∞ if σ0 = ∞.
For λ ∈ [0, λ0), we define the nonempty closed convex set

Λ =
{

u ∈ Bb(D) :
(

1 − θ(λ)
σ0

)
exp (−λND(q)) HDϕ(x) ≤ u(x) ≤ HDϕ(x)

}
.

Let T be the operator defined on Λ by

Tu = HDϕ − DGλq(λq HDϕ) + DGλq(λq u − λf(, u)).

We will prove that Λ is invariant under T and T has a fixed point in Λ which is
a solution of the integral equation

u = HDϕ − DG(λf(·, u)) in D. (3.2)

For each u ∈ Λ, we have

Tu = HDϕ − λDGλq(qHDϕ) + λDGλq(q u − f(·, u))
≤ HDϕ − λDGλq(qHDϕ) + λDGλq(q u)
≤ HDϕ.
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Now, since for each y ∈ D the function t −→ q t−f(y, t) is nondecreasing on [0, ∥ϕ∥∞],
then for each y ∈ D and t ∈ [0, ∥ϕ∥∞] we have q t + f(y, 0) − f(y, t) ≥ 0. So using
Proposition 2.7, hypothesis (H1) and (1.7) we get

Tu = HDϕ − DGλq(λqHDϕ) − λDGλq(f(·, 0)) + λDGλq(q u + f(, 0) − f(·, u))
≥ e−ND(λq)HDϕ − λDGλq(f(·, 0))
≥ e−λND(q)HDϕ − λDG(f(·, 0))

≥ e−λND(q)HDϕ − λ
DG(f(·, 0))

HDϕ
HDϕ

≥ e−λND(q)HDϕ − λ sup
x∈D

[
DGf(·, 0)(x)

HDϕ(x)

]
HDϕ

≥ e−λND(q)HDϕ − λ

inf
x∈D

[
HDϕ(x)

DGf(·, 0)(x)

]HDϕ

≥ exp(−λND(q))
[
1 − θ(λ)

σ0

]
HDϕ.

Consequently TΛ ⊂ Λ. Next, we prove that T is a nondecreasing operator on Λ. For
this aim, we consider u, v ∈ Λ such that u ≤ v. Then using hypothesis (H2), we get

Tu − Tv = λDGλq (qu − f(·, u) − qv + f(·, v))
= λDGλq (f(·, v) − f(·, u) − q(v − u)) ≤ 0.

Next, we consider the sequence (un)n≥0 defined by
u0 = HDϕ − λDGλq(qHDϕ) − λ DGλq(f(·, 0)) and un+1 = Tun for n ≥ 0.

Using the monotonicity of T , we obtain
u0 ≤ u1 ≤ . . . ≤ un ≤ un+1 ≤ HDϕ.

It follows from the dominated convergence theorem and the continuity of f that the
sequence (un)n≥0 converges to a function u ∈ Λ satisfying Tu = u, or equivalently

u = HDϕ − DGλq(λqHDϕ) − λDGλq(f(·, 0)) + λDGλq(q u + f(·, 0) − f(·, u)).
This implies that

(I − DGλq(λq.))u = (I − DGλq(λq.))HDϕ − DGλq(λf(·, u)).
After applying the operator (I + DG(λq.)) on the last equation, we deduce by (1.5)
and (1.6) that u is a solution of the integral equation (3.2). Now, using hypothesis
(H2) we obtain

0 ≤ f(y, u(y)) ≤ f(y, 0) + q u ≤ f(y, 0) + ∥ϕ∥∞q.

Since f(·, 0), q ∈ K(D), we obtain f(·, u) ∈ K(D). So, using property 4 of Proposi-
tion 2.6 we obtain DG(f(·, u)) ∈ C0(D). This together with the definition of HDϕ imply
that u ∈ C(D) and u = ϕ on ∂D. Applying (1.3) we deduce that u is a continuous
weak solution of (1.2).
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4. EXISTENCE OF POSITIVE SOLUTIONS
FOR SOME SEMILINEAR ELLIPTIC SYSTEMS

In this section we deal with the existence of positive continuous weak solutions for the
semilinear elliptic system (1.1). We assume that the functions f, g satisfy the following
hypotheses
(H4) f, g : D × [0, ∞) × [0, ∞) → [0, ∞) are Borel measurable functions such that

for each x ∈ D the function (u, v) → (f(x, u, v), g(x, u, v)) is continuous on
[0, ∞) × [0, ∞) and for each (x, v) ∈ D × [0, ∞) the function u → f(x, u, v) is
nondecreasing and for each (x, u) × D × [0, ∞) the function v → g(x, u, v)
is nondecreasing.

(H5) The functions f(·, 0, 0), g(·, 0, 0) belong to the class K(D).
(H6) For each M > 0, there exist a nonnegative function qM ∈ K(D) and two

continuous functions g1, f2 : [0, ∞) → [0, ∞) such that for every 0 ≤ t1 ≤ t2 ≤ M ,
0 ≤ s1 ≤ s2 ≤ M and x ∈ D we have

|f(x, t2, s2) − f(x, t1, s1)| ≤ qM (x) [(t2 − t1) + |g1(s2) − g1(s1)|] ,

|g(x, t2, s2) − g(x, t1, s1)| ≤ qM (x) [(s2 − s1) + |f2(t2) − f2(t1)|] .

(H7)

σ1 = inf
x∈D

HDϕ1(x)
DG(ω1)(x) > 0 and σ2 = inf

x∈D

HDϕ2(x)
DG(ω2)(x) > 0,

where

ω1(x) = f(x, 0, 0) + qM (x)
(

max
0≤s≤∥ϕ2∥∞

g1(s)
)

,

ω2(x) = g(x, 0, 0) + qM (x)
(

max
0≤t≤∥ϕ1∥∞

f2(t)
)

,

M = max (∥ϕ1∥∞, ∥ϕ2∥∞)

and the functions qM , g1, f2 are given in (H6).
Definition 4.1. A pair (u, v) is said to be a positive continuous weak solution
for (1.1) if
(i) (u, v) ∈ C(D) × C(D) and u > 0, v > 0 in D,
(ii) for every φ ∈ C∞

c (D) we have
∫

D

u(x)∆φ(x) − f(x, u(x), v(x))φ(x) dx = 0

and ∫

D

v(x)∆φ(x) − g(x, u(x), v(x))φ(x) dx = 0,

(iii) limx→ξ∈∂D
x∈D

u(x) = ϕ1(ξ) and limx→ξ∈∂D
x∈D

v(x) = ϕ2(ξ).



Existence of positive continuous weak solutions. . . 509

Under the precedent hypotheses we prove the following theorem.

Theorem 4.2. Let ϕ1, ϕ2 be two nontrivial nonnegative continuous functions on ∂D
and f, g : D × [0, ∞) × [0, ∞) → [0, ∞) be two Borel measurable functions satisfying
hypotheses (H4)–(H7). Then there exist λ0 > 0 and µ0 > 0 such that for each λ ∈ [0, λ0)
and µ ∈ [0, µ0), system (1.1) has a continuous weak solution (u, v) satisfying

c̃1,λ HDϕ1 ≤ u ≤ HDϕ1 and c̃2,µ HDϕ2 ≤ v ≤ HDϕ2 inD, (4.1)

where c̃1,λ, c̃2,µ ∈ [0, 1).

Remark 4.3. Let u, v ∈ C(D) such that 0 ≤ u ≤ HDϕ1, 0 ≤ v ≤ HDϕ2 and assume
that hypotheses (H4)–(H7) are satisfied. Then from hypothesis (H6) we have

0 ≤ f(x, 0, v) ≤ ω1(x) and 0 ≤ g(x, u, 0) ≤ ω2(x) , for every x ∈ D.

Hence
σ′

0 = inf
x∈D

[
HDϕ1(x)

DGf(·, 0, v)(x)

]
≥ inf

x∈D

[
HDϕ1(x)

DG(ω1)(x)

]
= σ1 > 0

and
σ′′

0 = inf
x∈D

[
HDϕ2(x)

DGg(·, u, 0)(x)

]
≥ inf

x∈D

[
HDϕ2(x)

DG(ω2)(x)

]
= σ2 > 0.

Define the positive constants

λ1 = θ−1(σ1) and µ1 = θ−1(σ2) for θ(r) = r exp (r ND(qM )) .

Then it follows from Theorem 3.7, the fact that f is nondecreasing with respect to
the second variable, the fact that g is nondecreasing with respect to the third variable
and Proposition 3.2 that for 0 ≤ λ < λ1 and 0 ≤ µ < µ1 the problem





∆y = λ f(x, y, v) in D (in the sense of distributions),
∆z = µ g(x, u, z) in D (in the sense of distributions),
y = ϕ1 and z = ϕ2 on ∂D

(4.2)

has a unique pair (y, z) of continuous weak solution satisfying

c̃1,λ HDϕ1 ≤ y ≤ HDϕ1 and c̃2,µ HDϕ2 ≤ z ≤ HDϕ2 in D, (4.3)

where

c̃1,λ =
[
1 − θ(λ)

σ1

]
exp(−λND(qM )) and c̃2,µ =

[
1 − θ(µ)

σ2

]
exp(−µND(qM )).

Proof of Theorem 4.2. Let λ1 = θ−1(σ1), µ1 = θ−1(σ2), c̃1,λ and c̃2,µ be the constants
defined in the Remark 4.3. For any (λ, µ) ∈ [0, λ1) × [0, µ1), we consider the nonempty
closed convex set

Γ =
{

(u, v) ∈ C(D) × C(D) : c̃1,λ HDϕ1 ≤ u ≤ HDϕ1; c̃2,µ HDϕ2 ≤ v ≤ HDϕ2
}
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and define the operator T on Γ by

T (u, v) = (T1(u, v), T2(u, v)) = (y, z),

the unique positive continuous weak solution of the problem (4.2). Then by
Theorem 3.7, the solution (y, z) ∈ C(D) × C(D), satisfies (4.3) and the integral
the equations

y = HDϕ1 − λDG (f(·, y, v)) , z = HDϕ2 − µDG (g(·, u, z)) .

In particular we deduce that Γ is invariant under T . In order to use the Schauder fixed
point theorem, we will prove that T is a compact operator on Γ. First, we prove that
T1(Γ) and T2(Γ) are equicontinuous on D. Let x, x′ ∈ D. Then for any (u, v) ∈ Γ such
that T (u, v) = (T1(u, v), T2(u, v)) = (y, z) we have

|y(x) − y(x′)| ≤ |HDϕ1(x) − HDϕ1(x′)| + λ
∣∣DG(f(·, y, v))(x) − DG(f(·, y, v))(x′)

∣∣

and

|z(x) − z(x′)| ≤ |HDϕ2(x) − HDϕ2(x′)| + µ
∣∣DG(g(·, u, z))(x) − DG(g(·, u, z))(x′)

∣∣ .

Since u, v, y, z have range in [0, M ] in D and g1, f2 are continuous then for each x ∈ D
we have

0 ≤ f(x, y, v) ≤ f(x, 0, 0) + qM (x)
(

∥ϕ1∥∞ + max
0≤s≤∥ϕ2∥∞

g1(s)
)

:= ρ1(x)

and

0 ≤ g(x, u, z) ≤ g(x, 0, 0) + qM (x)
(

∥ϕ2∥∞ + max
0≤t≤∥ϕ1∥∞

f2(t)
)

:= ρ2(x).

Since f(·, 0, 0), g(·, 0, 0) and qM belong to K(D), then it follows from Proposition 2.8
that the families Fρ1 and Fρ2 are equicontinuous in D. This together with the fact that
HDϕ1 and HDϕ2 are continuous in D imply that for every ε > 0, there exists η > 0
such that for every x, x′ ∈ D with ∥x − x′∥ < η we have

∥T1(u, v)(x) − T1(u, v)(x′)∥ < ε and ∥T2(u, v)(x) − T2(u, v)(x′)∥ < ε

for every (u, v) ∈ Γ. Which means that T1(Γ) and T2(Γ) are equicontinuous in D.
Using this fact and the boundedness of T1(Γ) and T2(Γ), we deduce that they are
relatively compact in C(D) × C(D). Next, we prove that T is continuous. To this aim,
we consider a sequence (uk, vk)k in Γ that converges to (u, v) ∈ Γ with respect to the
norm ∥ · ∥∞ + ∥ · ∥∞. Put

(y, z) = T (u, v) = (T1(u, v), T2(u, v))

and
(yk, zk) = T (uk, vk) = (T1(uk, vk), T2(uk, vk)).
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Then we have

yk − y = λDG(f(·, y, v)) − λDG(f(·, yk, vk))
= λDG (f(·, y, v) − f(·, yk, v)) − λDG (f(·, yk, vk) − f(·, yk, v)) .

So

(yk − y) + λDG (f(·, yk, v) − f(·, y, v)) = λDG (f(·, yk, v) − f(·, yk, vk)) . (4.4)

Put

hk(x) =





f(x, yk(x), v(x)) − f(x, y(x), v(x))
yk(x) − y(x) if yk(x) ̸= y(x),

0 if yk(x) = y(x).
Then

f(x, yk(x), v(x)) − f(x, y(x), v(x)) = (yk(x) − y(x))hk(x),
for every x ∈ D, and from hypotheses (H4) and (H6) we obtain 0 ≤ hk(x) ≤ qM (x)
for each k and each x ∈ D. Since qM ∈ K(D), then λhk. Thus equation (4.4) can be
written

(yk − y) + DG (λhk(yk − y)) = λDG (f(·, yk, v) − f(·, yk, vk)) (4.5)
with λhk ∈ K(D). This allows us to apply

(
I − DGλhk

(λhk( ·))
)

to equation (4.4) to
obtain

yk − y = λDGλhk
(f(·, yk, vk) − f(·, yk, v)) .

Hence it follows from hypothesis (H6), inequality (1.7) and the fourth property of
Proposition 2.6 that there exists C > 0 independent of k such that

∥yk − y∥∞ ≤ C λ∥DG (qM ) ∥∞∥g1(v) − g1(vk)∥∞.

Now, since v(x), vk(x) ∈ [0, ∥ϕ2∥∞] for each x ∈ D and each k, then using the uniform
continuity of g1 on [0, ∥ϕ2∥∞] and the uniform convergence of (vk)k to v in D, we deduce
that (g1(vk))k converges uniformly to g1(v) in D. Hence limk→∞ ∥yk − y∥∞ = 0. This
proves that T1 is continuous. In the same manner we prove that limk→∞ ∥zk −z∥∞ = 0,
and so T2 is also continuous. Consequently T is continuous on Γ. From the Schauder
fixed point theorem we deduce that there exist (u, v) ∈ Γ such that T (u, v) = (u, v).
Equivalently,

u = HDϕ1 − λ DG (f(·, u, v)) and v = HDϕ2 − µ DG (g(·, u, v)) .

The pair (u, v) is a positive continuous weak solution of (1.1) satisfying (4.1).

Example 4.4. Let f : D × [0, ∞) × [0, ∞) → [0, ∞) be defined by
f(x, t, s) = p(x)f1(t)g1(s) with p ∈ K(D), g1 : [0, ∞) → [0, ∞) is continuous and
f1 : [0, ∞) → [0, ∞) is continuous and nondecreasing and for each M > 0, there exists
b = b(M) > 0 such that

f1(t2) − f1(t1) ≤ b(t2 − t1) for 0 ≤ t1 ≤ t2 ≤ M.

Then hypotheses (H4)–(H6) are satisfied.
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Example 4.5. Let α1, β1, γ1, ν1 ∈ R such that α1 ≥ 0, α1 + γ1 ≥ 0 and define
f : D × [0, ∞) × [0, ∞) → [0, ∞) by

f(x, t, s) = 1
(ρ0(x))β1

(
ρ0(x) + t + s

)γ1 (
ρ0(x) + t

)α1 (
ρ0(x) + s

)ν1
.

The condition α1 ≥ 0 and α1 + γ1 ≥ 0 is a necessary and sufficient condition in order
that f is nondecreasing with respect to the variable t for each (x, s) ∈ D × [0, ∞).
Next, we assume that this condition is satisfied and we will prove that f satisfy (H5)
and (H6) if β1 < 2 + min (γ1 + ν1 − 1, γ1 − 1, ν1 − 1, α1 − 1, 0). Under this condition
we clearly see that

f(x, 0, 0) = 1
(ρ0(x))β1−γ1−α1−ν1

∈ K(D)

and (H5) is satisfied. To verify (H6), we consider M > 0, 0 ≤ t1 ≤ t2 ≤ M and
0 ≤ s1 ≤ s2 ≤ M . Then, there exist η1 ∈ (t1 + s1, t2 + s2), η2 ∈ (t1, t2) and
η3 ∈ (s1, s2) such that

(
ρ0(x) + t2 + s2

)γ1 −
(
ρ0(x) + t1 + s1

)γ1 = γ1(t2 − t1 + s2 − s1)
(
ρ0(x) + η1

)γ1−1
,

(
ρ0(x) + t2

)α1 −
(
ρ0(x) + t1

)α1 = α1(t2 − t1)
(
ρ0(x) + η2

)α1−1

and
1

(
ρ0(x) + s2

)−ν1
− 1

(
ρ0(x) + s1

)−ν1
= ν1(s2 − s1) 1

(
ρ0(x) + η3

)1−ν1
.

So

f(x, t2, s2) − f(x, t1, s1)

= 1
(
ρ0(x)

)β1

[(
ρ0(x) + t2 + s2

)γ1 (
ρ0(x) + t2

)α1

(
ρ0(x) + s2

)−ν1

−
(
ρ0(x) + t1 + s1

)γ1 (
ρ0(x) + t1

)α1

(
ρ0(x) + s1

)−ν1

]

= 1
(
ρ0(x)

)β1

[[(
ρ0(x) + t2 + s2

)γ1 −
(
ρ0(x) + t1 + s1

)γ1] (
ρ0(x) + t2

)α1

(
ρ0(x) + s2

)−ν1

+
(
ρ0(x) + t1 + s1

)γ1 ((
ρ0(x) + t2

)α1 −
(
ρ0(x) + t1

)α1)
(
ρ0(x) + s2

)−ν1

]

+
(
ρ0(x) + t1 + s1

)γ1(
ρ0(x) + t1

)α1

(
ρ0(x)

)β1

[
1

(
ρ0(x) + s2

)−ν1
− 1

(
ρ0(x) + s1

)−ν1

]
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= 1
(
ρ0(x)

)β1

[
γ1(t2 − t1 + s2 − s1)

(
ρ0(x) + η1

)γ1−1(
ρ0(x) + t2

)α1

(
ρ0(x) + s2

)−ν1

+
α1(t2 − t1)

(
ρ0(x) + η2

)α1−1(
ρ0(x) + t1 + s1

)γ1

(
ρ0(x) + s2

)−ν1

+ν1(s2 − s1)
(
ρ0 + t1 + s1

)γ1(
ρ0(x) + t1

)α1 1
(
ρ0(x) + η3

)1−ν1

]

= 1
(ρ0(x))β1

[(t2 − t1) T1 + (s2 − s1) T2] ,

where

T1 = γ1(ρ0(x) + η1)γ1−1(ρ0(x) + t2)α1 + α1(ρ0(x) + η2)α1−1(ρ0(x) + t1 + s1)γ1

(ρ0(x) + s2)−ν1

and

T2 =
γ1

(
ρ0(x) + η1

)γ1−1(
ρ0(x) + t2

)α1

(
ρ0(x) + s2

)−ν1
+

ν1
(
ρ0 + t1 + s1

)γ1(
ρ0(x) + t1

)α1

(
ρ0(x) + η3

)1−ν1
.

To estimate T1 and T2, we discuss the following cases.
Case 1. α1 ≥ 1
In this case we discuss nine subcases.
1) If γ1 ≥ 1 and ν1 ≥ 1, then T1 ≤ C and T2 ≤ C. Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1
[(t2 − t1) + (s2 − s1)] .

2) If γ1 ≥ 1 and 0 ≤ ν1 < 1, then T1 ≤ C and T2 ≤ C

(ρ0(x))1−ν1
. Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−ν1
[(t2 − t1) + (s2 − s1)] .

3) If γ1 ≥ 1 and ν1 < 0, then T1 ≤ C

(ρ0(x))−ν1
and T2 ≤ C

(ρ0(x))1−ν1
. Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−ν1
[(t2 − t1) + (s2 − s1)] .

4) If 0 ≤ γ1 < 1 and ν1 ≥ 1, then T1 ≤ C

(ρ0(x))1−γ1
and T2 ≤ C

(ρ0(x))1−γ1
. Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−γ1
[(t2 − t1) + (s2 − s1)] .

5) If 0 ≤ γ1 < 1 and 0 ≤ ν1 < 1, then

T1 ≤ C

(ρ0(x))1−γ1
and T2 ≤ C1

(ρ0(x))1−γ1
+ C2

(ρ0(x))1−ν1
≤ C

(ρ0(x))max(1−γ1,1−ν1) .
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Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1−min(γ1−1,ν1−1) [(t2 − t1) + (s2 − s1)] .

6) If 0 ≤ γ1 < 1 and ν1 < 0, then

T1 ≤ C

(ρ0(x))1−γ1−ν1
and T2 ≤ C1

(ρ0(x))1−γ1−ν1
+ C2

(ρ0(x))1−ν1
≤ C

(ρ0(x))1−ν1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−ν1
[(t2 − t1) + (s2 − s1)] .

7) If −α1 ≤ γ1 < 0 and ν1 ≥ 1, then

T1 ≤ C1
(ρ0(x))1−γ1

+ C2
(ρ0(x))−γ1

≤ C

(ρ0(x))1−γ1
and T2 ≤ C

(ρ0(x))1−γ1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−γ1
[(t2 − t1) + (s2 − s1)] .

8) If −α1 ≤ γ1 < 0 and 0 ≤ ν1 < 1, then

T1 ≤ C1
(ρ0(x))1−γ1

+ C2
(ρ0(x))−γ1

≤ C

(ρ0(x))1−γ1

and
T2 ≤ C1

(ρ0(x))1−γ1
+ C2

(ρ0(x))1−γ1−ν1
≤ C

(ρ0(x))1−γ1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−γ1
[(t2 − t1) + (s2 − s1)] .

9) If −α1 ≤ γ1 < 0 and ν1 < 0, then

T1 ≤ C1
(ρ0(x))1−γ1−ν1

+ C2
(ρ0(x))−γ1−ν1

≤ C

(ρ0(x))1−γ1−ν1
and T2 ≤ C

(ρ0(x))1−γ1−ν1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−γ1−ν1
[(t2 − t1) + (s2 − s1)] .

Case 2. 0 ≤ α1 < 1
In this case we discuss also nine subcases.
1) If γ1 ≥ 1 and ν1 ≥ 1, then

T1 ≤ C1 + C2
(ρ0(x))1−α1

≤ C

(ρ0(x))1−α1

and T2 ≤ C.
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Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−α1
[(t2 − t1) + (s2 − s1)] .

2) If γ1 ≥ 1 and 0 ≤ ν1 < 1, then T1 ≤ C1 + C2
(ρ0(x))1−α1 and T2 ≤ C1 + C2

(ρ0(x))1−ν1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1−min(α1−1,ν1−1) [(t2 − t1) + (s2 − s1)] .

3) If γ1 ≥ 1 and ν1 < 0, then

T1 ≤ C1
(ρ0(x))−ν1

+ C2
(ρ0(x))1−α1−ν1

≤ C

(ρ0(x))1−α1−ν1

and
T2 ≤ C1

(ρ0(x))−ν1
+ C2

(ρ0(x))1−ν1
≤ C

(ρ0(x))1−ν1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−ν1
[(t2 − t1) + (s2 − s1)] .

4) If 0 ≤ γ1 < 1 and ν1 ≥ 1, then

T1 ≤ C1
(ρ0(x))1−γ1

+ C1
(ρ0(x))1−α1

≤ C

(ρ0(x))max(1−γ1,1−α1)

and
T2 ≤ C1

(ρ0(x))1−γ1
+ C2.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1−min(γ1−1,α1−1) [(t2 − t1) + (s2 − s1)] .

5) If 0 ≤ γ1 < 1 and 0 ≤ ν1 < 1, then

T1 ≤ C1
(ρ0(x))1−γ1

+ C2
(ρ0(x))1−α1

and
T2 ≤ C1

(ρ0(x))1−γ1
+ C2

(ρ0(x))1−ν1
≤ C

(ρ0(x))max(1−γ1,1−ν1) .

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1−min(γ1−1,ν1−1,α1−1) [(t2 − t1) + (s2 − s1)] .
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6) If 0 ≤ γ1 < 1 and ν1 < 0, then

T1 ≤ C1
(ρ0(x))1−γ1−ν1

+ C2
(ρ0(x))1−α1−ν1

≤ C

(ρ0(x))max(1−γ1,1−α1)

and
T2 ≤ C1

(ρ0(x))1−γ1−ν1
+ C2

(ρ0(x))1−ν1
≤ C

(ρ0(x))1−ν1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−ν1
[(t2 − t1) + (s2 − s1)] .

7) If −α1 ≤ γ1 < 0 and ν1 ≥ 1, then

T1 ≤ C1
(ρ0(x))1−γ1

+ C2
(ρ0(x))−γ1

≤ C

(ρ0(x))1−γ1
and T2 ≤ C

(ρ0(x))1−γ1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−γ1
[(t2 − t1) + (s2 − s1)] .

8) If −α1 ≤ γ1 < 0 and 0 ≤ ν1 < 1, then

T1 ≤ C1
(ρ0(x))1−γ1

+ C2
(ρ0(x))−γ1

≤ C

(ρ0(x))1−γ1

and
T2 ≤ C1

(ρ0(x))1−γ1
+ C2

(ρ0(x))1−γ1−ν1
≤ C

(ρ0(x))1−γ1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−γ1
[(t2 − t1) + (s2 − s1)] .

9) If −α1 ≤ γ1 < 0 and ν1 < 0, then

T1 ≤ C1
(ρ0(x))1−γ1−ν1

+ C2
(ρ0(x))−γ1−ν1

≤ C

(ρ0(x))1−γ1−ν1

and
T2 ≤ C

(ρ0(x))1−γ1−ν1
.

Hence

|f(x, t2, s2) − f(x, t1, s1)| ≤ C

(ρ0(x))β1+1−γ1−ν1
[(t2 − t1) + (s2 − s1)] .
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By regrouping all these cases we obtain

|f(x, t2, s2) − f(x, t1, s1)|

≤ C

(ρ0(x))β1−min(γ1+ν1−1,γ1−1,ν1−1,α1−1,0) [(t2 − t1) + (s2 − s1)] .

This shows that f satisfy (H6) with

qM (x) = C

(ρ0(x))β1−min(γ1+ν1−1,γ1−1,ν1−1,α1−1,0) .

To guarantee that f satisfy (H7), we assume the following stronger conditions on β1.
Namely, β1 < 1+min (γ1 + ν1 − 1, γ1 − 1, ν1 − 1, α1 − 1, 0). Indeed using the fact that
α1 ≥ 0, we obtain

min (γ1 + ν1 − 1, α1 − 1, ) = −1 + min (γ1 + ν1, α1, ) ≤ −1 + γ1 + ν1 + α1.

Hence
min (γ1 + ν1 − 1, γ1 − 1, ν1 − 1, α1 − 1, 0) ≤ −1 + γ1 + ν1 + α1.

Consequently

ω1(x) = f(x, 0, 0) + ∥ϕ2∥∞ qM (x)

= 1
(ρ0(x))β1−γ1−α1−ν1

+ C∥ϕ2∥∞
(ρ0(x))β1−min(γ1+ν1−1,γ1−1,ν1−1,α1−1,0)

≤ C∥ϕ2∥∞
(ρ0(x))β1−min(γ1+ν1−1,γ1−1,ν1−1,α1−1,0) .

Now, since β1 − min (γ1 + ν1 − 1, γ1 − 1, ν1 − 1, α1 − 1, 0) < 1, then we deduce from
proposition 5 in [15] that there exists C1 > 0 such that

1
C1

ρ0(x) ≤ DG(ω1)(x) ≤ C1ρ0(x)

for every x ∈ D. On the other hand, since D is a bounded C1,1-domain and HDϕ1 is
positive and harmonic in D, then it follows from Corollary 6.2 in [1] that there exists
C2 > 0 depending only on ϕ1 and D such that C2 ρ0(x) ≤ HDϕ1(x) for every x ∈ D.
Consequently for x ∈ D we have

HDϕ1(x)
DG(ω1)(x) ≥ C2 ρ0(x)

C1 ρ0(x) = C2
C1

> 0

and then σ1 > 0.

The development of the previous example leads us to the following consequence
that we cannot deduce using results of [2, 11] and [19].
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Corollary 4.6. Let α1,α2, β1, β2, γ1, γ2, ν1, ν2 ∈ R such that α1 ≥ 0, α1 + γ1 ≥ 0,
ν2 ≥ 0, ν2 + γ2 ≥ 0, β1 < 1 + min (γ1 + ν1 − 1, γ1 − 1, ν1 − 1, α1 − 1, 0) and β2 <
1 + min (γ2 + α2 − 1, γ2 − 1, α2 − 1, ν2 − 1, 0). Let D is a bounded C1,1-domain of Rd,
d ≥ 2, ϕ1, ϕ2 nontrivial nonnegative continuous functions on ∂D. Then there exist
λ0 > 0 and µ0 > 0 such that for every λ ∈ [0, λ0) and µ ∈ [0, µ0) the system




∆u = λ
(ρ0(x))β1

(
ρ0(x) + u(x) + v(x)

)γ1 (
ρ0(x) + u(x)

)α1 (
ρ0(x) + v(x)

)ν1 in D,

∆v = µ
(ρ0(x))β2

(
ρ0(x) + u(x) + v(x)

)γ2 (
ρ0(x) + u(x)

)α2 (
ρ0(x) + v(x)

)ν2 in D,

u = ϕ1 and v = ϕ2 on ∂D,

has a positive continuous weak solution (u, v) satisfying

c̃1,λ HDϕ1 ≤ u ≤ HDϕ1 and c̃2,µ HDϕ2 ≤ v ≤ HDϕ2 in D,

where c̃1,λ , c̃2,µ ∈ [0, 1).
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