PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optyczne metody obrazowania molekularnego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Optical methods of molecular imaging
Języki publikacji
PL
Abstrakty
PL
Obrazowanie molekularne jest szybko rozwijającą się dziedziną badań w zakresie biotechnologii i inżynierii biomedycznej. W artykule przedstawiono przegląd technik stosowanych w obrazowaniu molekularnym, wykorzystujących metody medycyny nuklearnej oraz optyczne techniki oparte na analizie promieniowania fluorescencyjnego. W szczególności opisano metody optyczne obrazowania molekularnego stosowane w skali mikroskopowej (mikroskopia konfokalna, obrazowanie czasu relaksacji fluorescencyjnej, transfer energii Foerstera) oraz wykorzystywane w badaniach na zwierzętach doświadczalnych. Omówiono także potencjalne wykorzystanie technik optycznych w badaniach dużych objętości tkanek.
EN
Molecular imaging (MI) is a rapidly emerging field of biomedical, biotechnological and engineering research. This study provides a brief review of the state-of-the-art techniques and methods of MI based on nuclear physics and fluorescent agents. Special attention will be focused on optical methods of MI applied in microscopic scale (multiphoton confocal microscopy, fluorescence lifetime imaging, Forster energy transfer) and in experimental animals. Potential application of MI in large tissue volumes will be also discussed.
Wydawca
Rocznik
Strony
331--335
Opis fizyczny
Twórcy
  • Instytut Biocybernetyki i Inżynierii Biomedycznej, Polska Akademia Nauk, ul. Trojdena 4, 02-109 Warszawa, tel. +48 (0) 22 6599143
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej, Polska Akademia Nauk, ul. Trojdena 4, 02-109 Warszawa, tel. +48 (0) 22 6599143
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej, Polska Akademia Nauk, ul. Trojdena 4, 02-109 Warszawa, tel. +48 (0) 22 6599143
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej, Polska Akademia Nauk, ul. Trojdena 4, 02-109 Warszawa, tel. +48 (0) 22 6599143
Bibliografia
  • 1. C.S. Levin: Primer on molecular imaging technology, Eur J Nucl Med Mol Imaging vol. 2, 2005, s. 325-345.
  • 2. J. Bil, M. Winiarska: Molekularne mechanizmy aktywności terapeutycznej rytuksymabu, przeciwciała monoklonalnego anty-CD20, Postępy biologii komórki 34, vol. 2, 2007, s. 335 359.
  • 3. T. Sołtysiński: Targets and strategies for imaging dynamics of molecular-cell interactions in autoimmune disorders, Molecular Imaging vol. 6, 2007, s. 365.
  • 4. J. Lakowicz: Principles of Fluorescence Spectroscopy, Kluwer Academic 1999.
  • 5. R.J. Paul, H. Schneckenburger: Oxygen concentration and the oxidation-reduction state of yeast: determination of free/bound NADH and flavins by time-resolved spectroscopy, Naturwissenschaften, vol. 83, 1996, s. 32-35.
  • 6. R. Buxton: An introduction to functional magnetic resonance imaging: principles and technics, Cambridge University Press 2002.
  • 7. J.R. Lakowicz, , H. Szmacinski, i in.: Fluorescence lifetime imaging of free and protein bound NADH, Proc Natl Acad Sci USA, vol. 89, 1992, s. 1271-1275.
  • 8. J.P. Knemeyer, N. Marme, i in.: Probes for detection of specific DNA sequences at the single-molecule level, Anal Chem, vol. 72, 2000, s. 3717-3724.
  • 9. H.C. Gerritsen, M. A. Asselbergs, i in.: Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution, J Microsc, vol. 206, 2002, s. 218-224.
  • 10. K.M. Hanson, M.J. Behne, i in.: Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient, Biophys J, vol. 83, 2002, s. 1682-1690.
  • 11. B. Treanor, P.M. Lanigan, i in.: Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse, J Microsc, vol. 217, 2005, s 36-43.
  • 12. K. Konig, I. Riemann: High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution, J Biomed Opt, vol. 8, 2003, s. 432-439.
  • 13. K. Konig, A. Ehlers, i in.: In vivo drug screening in human skin using femtosecond laser multiphoton tomography, Skin Pharmacol Physiol, vol. 19, 2006, s. 78-88.
  • 14. F.G. Blankenberg: Molecular imaging with single photon emission computed tomography. How new tracers can be employed in the nuclear medicine clinic, IEEE Eng Med Biol Mag, vol. 23, 2004, s. 51-57.
  • 15. S. Guccione, K.C. Li, i in.: Molecular imaging and therapy directed at the neovasculature in pathologies. How imaging can be incorporated into vascular-targeted delivery systems to generate active therapeutic agents, IEEE Eng Med Biol Mag, vol. 23, 2004, s. 50-56.
  • 16. M.G. Pomper, D.A. Hammoud: Positron emission tomography in molecular imaging. Could the promise of personalized patient care be reaching fruition?, IEEE Eng Med Biol Mag, vol. 23, 2004, s. 28-37.
  • 17. D. Noll: A primer on MRI and functional MRI. Technical Raport, University of Michigan, 2001.
  • 18. J.A. Detre, V. H. Subramanian, i in.: Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging, Magn. Reson. Med., vol. 14, 1990, s. 389-395.
  • 19. J.A. Detre, J.S. Leigh, i in.: Perfusion imaging, Magn Reson Med, vol. 23, 1992, s. 37-45.
  • 20. K.K. Kwong, A.L. Hopkins: Proton NMR imaging of cerebral blood flow using H2(17)O, Magn Reson Med, vol. 22, 1992, s. 154-158.
  • 21. J.W. Belliveau, K.K. Kwong, i in.: Magnetic resonance imaging mapping of brain function. Human visual cortex, Invest Radiol, vol. 27, 1992, s. 59-65.
  • 22. K.K. Kwong, J.W. Belliveau, i in.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc Natl Acad Sci USA, vol. 89, 1992, s. 5675-5679.
  • 23. A. Jasanoff: Functional MRI using molecular imaging agents, Trends Neurosci, vol. 28, 2005, s. 120-126.
  • 24. D. Spector, D. Goldman, Eds.: Basic Methods In Microscopy, NY, Cold Spring Harbor, 2006.
  • 25. A. Diaspro, P. Bianchini, i in.: Multi-photon excitation microscopy, Biomed Eng Online 5, 2006, s. 36.
  • 26. A. Graczyk, (red.): Fotodynamiczna metoda rozpoznawania i leczenia nowotworów, 1999.
  • 27. W. Becker: Advanced Time-Correlated Single Proton Counting Techniques, Springer, 2005.
  • 28. K.M. Berland: Fluorescence correlation spectroscopy: a new tool for quantification of molecular interactions, Methods Mol Biol, vol. 261, 2004, s. 383-398.
  • 29. E.M. SevickMuraca, G. Lopez, i in. : Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques, Photochemistry And Photobiology, vol. 66, 1997, s. 55-64.
  • 30. E.M. Sevick-Muraca, J.S. Reynolds, i in. : Fluorescence lifetime imaging of tissue volumes using near- infrared frequency domain photon migration, Photochemistry And Photobiology, vol. 69, 1999, s. 66-66.
  • 31. K. Suhling: Fluorescence life time imaging. Cell imaging, D. Stephens, Scion Publishing 2006.
  • 32. J.R. Lakowicz, I. Gryczynski, i in. : Correction for incomplete labeling in the measurement of distance distributions by frequency-domain fluorometry, Anal Biochem, vol. 195, 1991, s. 243-254.
  • 33. W. Bayens, D. de Keukeleire, i in. : Luminescence techniques in chemical and biochemical analysis, New York 1991.
  • 34. R.M. Andersson, K. Carlsson, i in. : Characterization of probe binding and comparison of its influence on fluorescence lifetime of two pH-sensitive benzo[c]xanthene dyes using intensity-modulated multiple-wavelength scanning technique, Anal Biochem, vol. 283, 2001, s. 104-110.
  • 35. K. Carlsson, A. Liljeborg, i in. : Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance, J Microsc, vol. 199, 2000, s. 106-114.
  • 36. R. Varma, S. Mayor: Homo-FRET measurements to investigate molecular-scale organization of preoteins in living cells. Cell imaging, D. Stephens, Scion Publishing 2006.
  • 37. K.M. Berland, P.T. So, i in. : Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment, Biophys J, vol. 68, 1995, s. 694-701.
  • 38. K.M. Berland: Fluorescence correlation spectroscopy: new methods for detecting molecular associations, Biophys J, vol. 72, 1997, s. 1487-1488.
  • 39. K. Berland, G. Shen: Excitation saturation in two-photon fluorescence correlation spectroscopy, Appl Opt, vol. 42, 2003, s. 5566-5576.
  • 40. R.H. Kohler, P. Schwille, i in. : Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy, J Cell Sci, vol. 113, 2000, s. 3921-3930.
  • 41. M.A. Medina, P. Schwille: Fluorescence correlation spectroscopy for the detection and study of single molecules in biology, Bioessays, vol. 24, 2000, s. 758-764.
  • 42. O.A. Mayboroda, A. van Remoortere, i in. : A new approach for fluorescence correlation spectroscopy (FCS) based immunoassays, J Biotechnol, vol. 107, 2004, s. 185-192.
  • 43. D. Zenisek: Total internal reflection fluorescence microscopy. Cell imaging, D.Stephens, Scion Publishing 2006.
  • 44. E.M. Hillman, A. Devor, i in. : Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation, Neuroimage vol. 35, 2007, s. 89-104.
  • 45. S.A. Burgess, M.B. Bouchard, i in. : Simultaneous multiwavelength laminar optical tomography, Opt Lett, vol. 33, 2008, s. 2710-2712.
  • 46. R. Weissleder, U. Mahmood: Molecular imaging, Radiology, vol. 219, 2001, s. 316-333.
  • 47. R. Weissleder, C.H. Tung, i in. : In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nature Biotechnology, vol. 17, 1999, s. 375-378.
  • 48. R. Weissleder, V. Ntziachristos: Shedding light onto live molecular targets, Nat Med vol. 9, 2003, s. 123-128.
  • 49. V. Ntziachristos, R. Weissleder: Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media, Med Phys, vol. 29, 2002, s. 803-809.
  • 50. V. Ntziachristos, R. Weissleder: Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation, Optics Letters, vol. 26, 2001, s. 893-895.
  • 51. V. Ntziachristos, C. Bremer, i in. : In vivo tomographic imaging of near-infrared fluorescent probes, Mol Imaging, vol. 1, 2002, s. 82-88.
  • 52. R. Weissleder: Scaling down imaging: Molecular mapping of cancer in mice, Nature Reviews Cancer, vol. 2, 2002, s. 11-18.
  • 53. E.M. Hillman, A. Moore: All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast, Nat Photonics, vol. 1, s. 526-530.
  • 54. S. Wray, M. Cope, i in. : Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation, Biochim Biophys Acta, vol. 933, 1988, s. 184-192.
  • 55. V. Ntziachristos, J. Ripoll, i in. : Would near-infrared fluorescence signals propagate through large human organs for clinical studies?, Optics Letters, vol. 27, 2002, s. 1652-1652.
  • 56. E.M. Sevick-Muraca, J.P. Houston, i in. : Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents, Curr Opin Chem Biol, vol. 6, 2002, s. 642-650.
  • 57. J.S. Reynolds, T.L. Troy, i in. : Imaging of spontaneous canine mammary tumors using fluorescent contrast agents, Photochem Photobiol, vol. 70, 1999, s. 87-94.
  • 58. T. Desmettre, J.M. Devoisselle, i in. : Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography, Surv Ophthalmol, vol. 45, 2000, s. 15-27.
  • 59. A. Corlu, R. Choe, i in. : Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans, Optics Express, vol. 15, 2007, s. 6696-6716.
  • 60. A. Liebert, H. Wabnitz, i in. : Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain, Neuroimage, vol. 31, 2006, s. 600-608.
  • 61. J. Steinbrink, A. Liebert, i in. : Towards noninvasive molecular fluorescence imaging of the human brain, Neurodegener Dis, vol. 5, 2008, s. 296-303.
  • 62. C. Bremer, V. Ntziachristos, i in. : Optical-based molecular imaging: contrast agents and potential medical applications, Eur Radiol, vol. 13, 2003, s. 231-243.
  • 63. J. Hardy, M. Edinger, i in. : Bioluminescence imaging of lymphocyte trafficking in vivo, Exp Hematol, vol. 29, 2001, s. 1353-1360.
  • 64. K.E. Luker, M.C. Smith, i in. : Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals, Proc Natl Acad Sci USA, vol. 101, 2004, s. 12288-12293.
  • 65. G.D. Luker, J.P. Bardill, i in. : Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice, J Virol, vol. 76, 2002, s. 12149-12161.
  • 66. G.D. Luker, V. Sharma, i in. : Noninvasive imaging of protein- protein interactions in living animals, Proc Natl Acad Sci USA, vol. 99, 2002, s. 6961-6966.
  • 67. R.N. Day, F. Schaufele: Fluorescent protein tools for studying protein dynamics in living cells: a review, J Biomed Opt, vol. 13, 2008, s. 031202.
  • 68. A.A. Alizadeh, M.B. Eisen, i in. : Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, vol. 403, 2000, s. 503-511.
  • 69. M. Hope-Ross, L.A. Yannuzzi, i in. : Adverse reactions due to indocyanine green, Ophthalmology, vol. 101, 1994, s. 529-533.
  • 70. S. Mordon, J.M. Devoisselle, i in. : Indocyanine green: physicochemical factors affecting its fluorescence in vivo, Microvasc Res, vol. 55, 1998, s. 146-152.
  • 71. C.J. Shu, S. Guo, i in. : Visualization of a primary anti-tumor immune response by positron emission tomography, Proc Natl Acad Sci USA, vol. 102, 2005, s. 17412-17417.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3c423c8-dd93-40f6-821e-47bd91ca0456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.