PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PZT-Type Ceramics Doped with Manganese, Antimony, Lanthanum and Tungsten - Technology and Physical Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work three ceramic compositions based on PbZr0.49 Ti0.51O3 doped with manganese (Mn), antimony (Sb), lanthanum (La) and tungsten (W) were obtained. The introduction of a set of admixtures was aimed at improving the sinterability of ceramic materials and optimizing its electrophysical parameters. Multi-component materials of the PZT-type with a general formula: Pb(PbZr0.49 Ti0.51)0.94 Mn0.021 Sb0.016 LayWz O3 (where y from 0.008 to 0.012 and z from 0.012 to 0.014) were prepared by the conventional mixed oxide method. After mixing and drying the powder mixtures were calcined in air at 850°C for 4 h, while densification of the powders was carried out by the free sintering method at 1150°C for 2 h. The final steps of technology were grinding, polishing, annealing and putting silver paste electrodes onto both surfaces of the samples for electrical testing. XRD, SEM, EDS, dielectric, ferroelectric, piezoelectric properties and DC electrical conductivity of the obtained ceramic compositions were carried out. X-ray tests of the crystal structure conducted at room temperature have shown that all obtained the PZT-type materials were a single phase (perovskite type) without the presence of a foreign phase. Symmetry of the crystal lattice was identified as space group P4mm. Temperature dielectric studies have shown high values of dielectric permittivity and low dielectric loss. The presented physical properties of ceramic samples based on PZT confirm their predisposition for application in modern microelectronic and micromechatronic applications.
Twórcy
autor
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Materials Engineering, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
autor
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Materials Engineering, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
autor
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Materials Engineering, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
autor
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Materials Engineering, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
Bibliografia
  • [1] Z.-G. Ye, Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications; Woodhead Publishing: Cambridge, England 2008.
  • [2] A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, Applications; second ed., Wiley, Chichester, West Sussex,2003.
  • [3] X. Li, J. S. Vartuli, D. L. Milius, I. A. Aksay, W. Y. Shih, W.-H. Shih, J. Am. Ceram. Soc. 84, 996-1003 (2001).
  • [4] P.-H. Xiang, X.-L. Dong, H. Chen, Z. Zhang, J.-K. Guo, Ceram. Int. 29, 499-503 (2003).
  • [5] H. Wei, Y. Chen, Ceram. Int. 41, 6158-6163 (2015).
  • [6] N. Texier, Ch. Courtois, M. Traianidis, A. Leriche, J. Eur. Ceram. Soc. 21, 1499-1502 (2001).
  • [7] B. Jaffe, R. Cook, H. Jaffe, Piezoelectric Ceramics. Academic Press, New York, 1971: 135
  • [8] A. S. Karapuzha, N. K. James, H. Khanbareh, S. van der Zwaag, W. A. Groen, Ferroelectrics 504, 160-171 (2016).
  • [9] E. Boucher, B. Guiffard, L. Lebrun, D. Guyomar, Ceram. Int.32, 479-485 (2006).
  • [10] M. V. Ramanaa, S. R. Kiran, N. R. Reddy, K. V. S. Kumar, V. R. K. Murthy, B. S. Murty, Mater. Chem. Phys. 126, 295-300 (2011).
  • [11] W. Qiu, H. H. Hng, Mater. Chem. Phys. 75, 151-156 (2002).
  • [12] R. Zachariasz, D. Bochenek, K. Dziadosz, J. Dudek, J. Ilczuk, Arch. Metall. Mater. 56, 1217-1222 (2011).
  • [13] J. Li, Q. Sun, Rare Metals 27, 362-366 (2008).
  • [14] D. Bochenek, P. Niemiec, R. Zachariasz, A. Chrobak, G. Ziółkowski, Arch. Metall. Mater. 58, 1013-1017 (2013).
  • [15] P. Niemiec, D. Bochenek, A. Chrobak, P. Guzdek, A. Błachowski, Int. J. Appl. Ceram. Tec. 12, E82-E89 (2015).
  • [16] R. Zachariasz, J. A. Bartkowska, D. Bochenek, P. Niemiec, Arch. Metall. Mater. 58, 1327-1330 (2013)
  • [17] D. Bochenek, P. Niemiec, J. Korzekwa, B. Durtka, Z. Stokłosa, Symmetry 10, 59, (2018).
  • [18] R. Zachariasz, D. Bochenek, P. Niemiec, J. Ilczuk, J. A. Bartkowska, D. Brzezińska, Mech. Syst. Signal Pr. 78, 84-90 (2016).
  • [19] C.-W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y. H. Lin, L. J. Dong, C. X. Xiong, Appl. Phys. Lett. 81, 3831 (2002).
  • [20] J. Yao, Ch. Xiong, L. Dong, Ch. Chen, Y. Lei, L. Chen, R. Li, Q. Zhu, X. Liu, J. Chem. Mater. 19, 2817-2821 (2009).
  • [21] N. Izyumskaya, Y. I. Alivov, S. J. Cho, H. Morkoç, H. Lee, Y. S. Kang, Critical Reviews in Solid State and Materials Sciences 32, 111-202 (2007).
  • [22] Z. Hu, R. C. Smith, J. Ernstberger, J. Intel. Mat. Syst. Str. 23, 1869-1894 (2012).
  • [23] O. Bilgen, C. Jr. De Marqui, K. B. Kochersberger, D. J. Inman, J. Intel. Mat. Syst. Str. 22, 81-91 (2011).
  • [24] J. Nuffer, T. Bein, Applications of piezoelectric materials in the transportation industry. Global Symposium on Innovative Solutions for the Advancement of the Transport Industry. San Sebastian, Spain, 2006.
  • [25] Y. Shi, S. R. Hallett, M. Zhu, Compos. Struct. 160, 1279-1286 (2017).
  • [26] V. Kumar, M. Hays, E. Fernandez, W. Oates, F. S. Alvi, Smart Materials and Structures 20, 105033 (2011).
  • [27] D. J. Leo, Engineering Analysis of Smart Material Systems, John Wiley and Sons, Inc., Hoboken, NJ, 2007.
  • [28] R. C. Smith, Smart Material Systems: Model Development, SIAM, Philadelphia, PA, 2005.
  • [29] K. Uchino, Ferroelectric Devices; 2nd Edition, CRC Press/Taylor and Francis, Boca Raton, FL, 2010.
  • [30] K. Uchino, J. R. Giniewicz, Micromechatronics, Marcel Dekker, Inc., New York, 2003.
  • [31] D. Vasic, E. Sarraute, F. Costa, P. Sangouard, E. Cattan, J. Micromech. Microeng. 14, S90-S96. (2004).
  • [32] M. Morawiec, A. Grajcar, Journal of Achievements in Materials and Manufacturing Engineering 80, 11-17 (2017).
  • [33] T. Yu, Z. X. Shen, W. S. Toh, J. M. Xue, J. Wang, J. Appl. Phys. 94, 618-620 (2003).
  • [34] G. Williamson, R. Smallman, Philos. Mag. 1, 34-46 (1956).
  • [35] A. Gantassi, H. Essaidi, K. Boubaker, J. C. Bernède, A. Colantoni, M. Amlouk, T. Manoubi, Mat. Sci. Semicon. Proc. 24, 237-248 (2014).
  • [36] Q. M. Zhang, H. Wang, N. Kim, L. E. Cross, J. Appl. Phys. 75, 454-459 (1994).
  • [37] D. Bochenek, Z. Surowiak, J. Krok-Kowalski, J. Poltierova-Vejpravova, J. Electroceram. 25, 122-129 (2010).
  • [38] T. Frömling, A. Schintlmeister, H. Hutter, J. Fleig, J. Am. Ceram. Soc. 94, 1173-1181 (2011).
  • [39] P. Kou, S. K. Sinha, Dig. J. Nanomater. Bios. 7, 3, 1327-1332 (2012).
  • [40] J. Chen, X. Tan, W. Jo, J. Rodel, J. Appl. Phys. 106, 034109 (2009).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3c06785-278b-4601-acf6-96bd202cf456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.