PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new iteration method for the solution of third-order BVP via Green's function

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a new iterative method for third-order boundary value problems based on embedding Green’s function is introduced. The existence and uniqueness theorems are established, and necessary conditions are derived for convergence. The accuracy, efficiency and applicability of the results are demonstrated by comparing with the exact results and existing methods. The results of this paper extend and generalize the corresponding results in the literature.
Wydawca
Rocznik
Strony
425--435
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Mathematical Engineering Department, Yildiz Technical University, 34210, Istanbul, Turkey
autor
  • Mathematical Engineering Department, Yildiz Technical University, 34210, Istanbul, Turkey
Bibliografia
  • [1] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, Journal de Mathématiques Pures et Appliquées 6 (1890), 145–210.
  • [2] W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953), 506–510, DOI: https://doi.org/10.1090/S0002-9939-1953-0054846-3.
  • [3] F. Ali, J. Ali, and I. Uddin, A novel approach for the solution of BVPs via Green’s function and fixed point iterative method, J. Korean Math. Soc. 66 (2021), 167–181, DOI: https://doi.org/10.1007/s12190-020-01431-7.
  • [4] S. A. Khuri and A. Sayfy, Variational iteration method: Green’s functions and fixed point iterations perspective, Appl. Math. Lett. 32 (2014), 24–34, DOI: https://doi.org/10.1016/j.aml.2014.01.006.
  • [5] M. I. Mohamed and M. A. Ragusa, Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions, Appl. Anal. 99 (2021), 1–15, DOI: https://doi.org/10.1080/00036811.2020.1839645.
  • [6] D. R. Anderson, Green’s function for a third-order generalized right focal problem, J. Math. Anal. Appl. 288 (2003), no. 1, 1–14, DOI: https://doi.org/10.1016/S0022-247X(03)00132-X.
  • [7] D. R. Anderson, Multiple positive solutions for a three-point boundary value problem, Math. Comput. Model. 27 (1998), no. 6, 49–57, DOI: https://doi.org/10.1016/S0895-7177(98)00028-4.
  • [8] D. R. Anderson and J. M. Davis, Multiple solutions and eigenvalues for third-order right focal boundary value problems, J. Math. Anal. Appl. 267 (2002), no. 1, 135–157, DOI: https://doi.org/10.1006/jmaa.2001.7756.
  • [9] F. A. Abd El-Salam, A. A. El-Sabbagh, and Z. A. Zaki, The numerical solution of linear third-order boundary value problems using nonpolynomial spline technique, J. Amer. Sci. 6 (2010), no. 12, 303-309.
  • [10] A. Benramdane, N. Mezouar, M. S. Alqawba, S. M. Boulaaras, and B. B. Cherif, Blow-up for a stochastic viscoelastic Lamé equation with logarithmic nonlinearity, J. Funct. Spaces 2021 (2021), 9943969, DOI: https://doi.org/10.1155/2021/9943969.
  • [11] A. Boucherif and N. Al-Malki, Nonlinear three-point third-order boundary value problems, Appl. Math. Comput. 190 (2007), no. 2, 1168–1177, DOI: https://doi.org/10.1016/j.amc.2007.02.039.
  • [12] Z. Bai and X. Fei, Existence of triple positive solutions for a third-order generalized right focal problem, Math. Inequal. Appl. 9 (2006), 437–444, DOI: https://doi.org/10.7153/mia-09-42.
  • [13] H. Chen, Positive solutions for the nonhomogeneous three-point boundary value problem of second-order differential equations, Math. Comput. Model. 45 (2007), no. 7–8, 844–852, DOI: https://doi.org/10.1016/j.mcm.2006.08.004.
  • [14] E. Dulacska, Soil Settlement Effects on Buildings, Developments in Geotechnical Engineering, vol. 69, Elsevier, Amsterdam, 1992.
  • [15] J. R. Graef and B. Yang, Multiple positive solutions to a three point third-order boundary value problem, Discrete Contin. Dyn. Syst. 2005 (2005), 337–344.
  • [16] M. Do Rosário Grossinho and F. M. Minhos, Existence result for some third-order separated boundary value problems, Nonlinear Anal. 47 (2001), no. 4, 2407–2418, DOI: https://doi.org/10.1016/S0362-546X(01)00364-9.
  • [17] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl. 2013 (2013), 69, DOI: https://doi.org/10.1186/1687-1812-2013-69.
  • [18] J. Prescott, Applied Elasticity, Green and Company, Longmans, 1924.
  • [19] W. Soedel, Vibrations of Shells and Plates, CRC Press, Indiana, USA, 2004.
  • [20] Y. Sun, Positive solutions of singular third-order three-point boundary value problems, J. Math. Anal. Appl. 306 (2005), no. 2, 589–603, DOI: https://doi.org/10.1016/j.jmaa.2004.10.029.
  • [21] S. P. Timoshenko and M. G. James, Theory of Elastic Stability, Courier Corporation, New York, USA, 2009.
  • [22] W. Zhao, Existence and uniqueness of solutions for third-order nonlinear boundary value problems, Tohoku Math. J. 44 (1992), no. 4, 545–555, DOI: https://doi.org/10.2748/tmj/1178227249.
  • [23] H. Yu, L. Haiyan, and Y. Liu, Multiple positive solutions to third-order three-point singular semipositone boundary value problem, Proc. Indian Acad. Sci. Math. Sci. 114 (2004), 409–422, DOI: https://doi.org/10.1007/BF02829445.
  • [24] Q.-L. Yao, The existence and multiplicity of positive solutions for a third-order three-point boundary value problem, Acta Math. Appl. Sin. 19 (2003), 117–122, DOI: https://doi.org/10.1007/s10255-003-0087-1.
  • [25] M. Abushammala, S. A. Khuri, and A. Sayfy, A novel fixed point iteration method for the solution of third-order boundary vale problems, Appl. Math. Comput. 271 (2015), 131–141, DOI: https://doi.org/10.1016/j.amc.2015.08.129.
  • [26] S. A. Khuri and I. Louhichi, A novel Ishikawa-Green’s fixed point scheme for the solution of BVPs, Appl. Math. Lett. 82 (2018), 50–57, DOI: https://doi.org/10.1016/j.aml.2018.02.016.
  • [27] R. P. Agarwal, Existence-uniqueness and iterative methods for third-order boundary value problems, J. Comput. Appl. Math. 17 (1987), no. 3, 271–289, DOI: https://doi.org/10.1016/0377-0427(87)90105-1.
  • [28] S. G. Georgiev and K. Zennir, Classical solutions for a class of IVP for nonlinear two-dimensional wave equations via new fixed point approach, Partial Differ. Equ. Appl. Math. 2 (2020), 100014, DOI: https://doi.org/10.1016/j.padiff.2020.100014.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3bee45b-67da-4c3e-bb87-b3e079e5ffa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.