PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ecological Risk Assessment for Heavy Metals in Agricultural Soils Surrounding Dumps, Huancayo Province, Peru

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contamination generated by dumps is an environmental problem because the soils around the dumps are used for the cultivation of agricultural products and pastures, and could constitute a threat to human health. The contamination index and ecological risk potential for heavy metals in agricultural soils surrounding the solid waste dumps in Agua de las Vírgenes (AV) and El Eden (ED) in Huancayo were evaluated. The concentration of heavy metals in the soils was measured using an inductively coupled optical emission spectrophotometer. The average concentration of As, Cd, Cr, Pb, Cu, Fe and Zn in the soils was 25.77, 1.03, 6.09, 112.07, 48.52, 53733.33 and 349.10 mg/kg in AV and 14.35, 0.28, 2.85, 123.01, 57.47, 36137.50 and 414.31 mg/kg in ED respectively. The mean values of the contamination factor for As determined a very high soil contamination status at both sites. The order of mean Igeo values was As> Cd> Pb> Zn> Cu> Fe> Cr. The soils are strongly enriched with As and Cd. The highest risk index was for Cd, with a higher contribution to the overall potential risk index. The principal component analysis explained that 71% of the data set and the identified sources of heavy metals are the varied composition of wastes in general and crop irrigation with wastewater. In general, agricultural soils are characterized for a level of ecological risk that varies from high to very high. Among the measured heavy metals As, Cd and Pb pose significant health risks. Continuous monitoring of the level of contamination of soils affected by dump leachate and wastewater irrigation is suggested.
Słowa kluczowe
Rocznik
Strony
75--89
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Perú
  • Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Perú
  • Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Perú
  • Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Perú
  • Centro Internacional de la Papa, 9 de Octubre, Huancayo 12000, Peru
  • Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Perú
Bibliografia
  • 1. Agbeshie A. A., Adjei R., Anokye J., Banunle A. 2020. Municipal waste dumpsite: Impact on soil properties and heavy metal concentrations, Sunyani, Ghana. Scientific African, 8, e00390. https://doi.org/10.1016/j.sciaf.2020.e00390
  • 2. Alam R., Ahmed Z., Howladar M. F. 2020. Evaluation of heavy metal contamination in water, soil and plant around the open landfill site Mogla Bazar in Sylhet, Bangladesh. Groundwater for Sustainable Development, 10(April 2019), 100311. https://doi.org/10.1016/j.gsd.2019.100311
  • 3. Ali S.M., Pervaiz A., Afzal B., Hamid N., Yasmin A. 2014. Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city. Journal of King Saud University Science, 26(1), 59–65. https://doi.org/10.1016/j.jksus.2013.08.003
  • 4. Alloway B. J. 2013. Heavy metals in soils (B. J. Alloway (ed.); Third ed.). Springer. https://doi.org/10.1007/978-94-007-4470-7
  • 5. Bastami K.D., Bagheri H., Kheirabadi V., Zaferani G.G., Teymori M.B., Hamzehpoor A., Soltani F., Haghparast S., Harami S.R.M., Ghorghani N.F., Ganji S. 2014. Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Marine Pollution Bulletin, 81(1), 262–267. https://doi.org/10.1016/j.marpolbul.2014.01.029
  • 6. Benson N. U. 2006. Lead, nickel, vanadium, cobalt, copper and manganese distributions in intensely cultivated floodplain ultisol of cross river, Nigeria. International Journal of Soil Science, 1(2), 140–145. https://doi.org/10.3923/ijss.2006.140.145
  • 7. Benson N.U., Enyong P.A., Fred-Ahmadu O.H. 2016. Trace Metal Contamination Characteristics and Health Risks Assessment of Commelina africana L. and Psammitic Sandflats in the Niger Delta, Nigeria. Applied and Environmental Soil Science, 2016. https://doi.org/10.1155/2016/8178901
  • 8. Bhatti S.S., Kumar V., Kumar A., Gouzos J., Kirby J., Singh J., Sambyal V., Nagpal A.K. 2018. Potential ecological risks of metal(loid)s in riverine floodplain soils. Ecotoxicology and Environmental Safety, 164, 722–731. https://doi.org/10.1016/j.ecoenv.2018.08.032
  • 9. Borjac J., El Joumaa M., Kawach R., Youssef L., Blake D.A. 2019. Heavy metals and organic compounds contamination in leachates collected from Deir Kanoun Ras El Ain dump and its adjacent canal in South Lebanon. Heliyon, 5(8), e02212. https://doi.org/10.1016/j.heliyon.2019.e02212
  • 10. Cai L.M., Wang Q.S., Wen H.H., Luo J., Wang S. 2019. Heavy metals in agricultural soils from a typical township in Guangdong province, China: Occurrences and spatial distribution. Ecotoxicology and Environmental Safety, 168(July 2018), 184–191. https://doi.org/10.1016/j.ecoenv.2018.10.092
  • 11. CCME. 2007. Canadian soil quality guidelines for the protection of environmental and human health (p. 6). Canadian Council of Ministers of the Environment. https://www.esdat.net/environmentalstandards/canada/soil/rev_soil_summary_tbl_7.0_e.pdf
  • 12. CCME. 2021. Canadian Environmental Quality Guidelines (CEQGs). Canadian Council of Ministers of the Environment. https://ccme.ca/en/current-activities/canadian-environmental-quality-guidelines
  • 13. Chandrasekaran A., Ravisankar R. 2019. Potential ecological risk assessment in soils of Yelagiri hill, Tamil Nadu using energy dispersive X-ray fluorescence (EDXRF) technique. Applied Radiation and Isotopes, 147, 76–82. https://doi.org/10.1016/j.apradiso.2019.01.009
  • 14. Chen T., Zhang S., Yuan Z. 2020. Adoption of solid organic waste composting products: A critical review. Journal of Cleaner Production, 272, 122712. https://doi.org/10.1016/j.jclepro.2020.122712
  • 15. Chen Y., Jiang X., Wang Y., Zhuang D. 2018. Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process Safety and Environmental Protection, 113, 204–219. https://doi.org/10.1016/j.psep.2017.10.008
  • 16. Corwin D. L., Lesch S.M. 2005. Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11–43. https://doi.org/10.1016/j.compag.2004.10.005
  • 17. Cwieląg-Drabek M., Piekut A., Gut K., Grabowski M. 2020. Risk of cadmium, lead and zinc exposure from consumption of vegetables produced in areas with mining and smelting past. Scientific Reports, 10, 1–9. https://doi.org/10.1038/s41598-020-60386-8
  • 18. Enuneku A., Biose E., Ezemonye L. 2017. Levels, distribution, characterization and ecological risk assessment of heavy metals in road side soils and earthworms from urban high traffic areas in Benin metropolis, Southern Nigeria. Journal of Environmental Chemical Engineering, 5(3), 2773–2781. https://doi.org/10.1016/j.jece.2017.05.019
  • 19. Essien J.P., Inam E.D., Ikpe D.I., Udofia G.E., Benson N.U. 2019. Ecotoxicological status and risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in Nigeria. Environmental Nanotechnology, Monitoring and Management, 11, 100215. https://doi.org/10.1016/j.enmm.2019.100215
  • 20. Fatta D., Papadopoulus A., Loizidou M. 1999. A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health, 21, 175–190. https://doi.org/10.1023/A
  • 21. Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/https://doi.org/10.1016/0043-1354(80)90143-8
  • 22. Huang J., Peng S., Mao X., Li F., Guo S., Shi L., Shi Y., Yu H., Zeng G.M. 2019. Source apportionment and spatial and quantitative ecological risk assessment of heavy metals in soils from a typical Chinese agricultural county. Process Safety and Environmental Protection, 126, 339–347. https://doi.org/10.1016/j.psep.2019.04.023
  • 23. Islam M. S., Ahmed M. K., Habibullah-Al-Mamun M., Eaton D. W. 2017. Human and ecological risks of metals in soils under different land use in an urban environment of Bangladesh. Pedosphere. https://doi.org/10.1016/s1002-0160(17)60395-3
  • 24. Jiang Y., Chao S., Liu J., Yang Y., Chen Y. 2017. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668. https://doi.org/10.1016/j.chemosphere.2016.11.088
  • 25. Kabata-Pendias A. 2011. Trace elements in soils and plants (Fourth Ed.). Taylor and Francis Group. http://www.taylorandfrancis.com
  • 26. Kamani H., Mahvi A.H., Seyedsalehi M., Jaafari J., Hoseini M., Safari G.H., Dalvand A., Aslani H., Mirzaei N., Ashrafi S.D. 2017. Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran. International Journal of Environmental Science and Technology, 14(12), 2675–2682. https://doi.org/10.1007/s13762-017-1327-x
  • 27. Keshavarzi A., Kumar V. 2019. Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of Northeastern Iran. International Journal of Environmental Health Research, 29(5), 544–560. https://doi.org/10.1080/09603123.2018.1555638
  • 28. Kowalska J.B., Mazurek R., Gąsiorek M., Zaleski T. 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z
  • 29. Krishna K.A., Mohan R.K. 2016. Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad, India. Environmental Earth Sciences, 75(5). https://doi.org/10.1007/s12665-015-5151-7
  • 30. Kumar V., Sharma A., Kaur P., Singh Sidhu G.P., Bali A.S., Bhardwaj R., Thukral A. K., Cerda A. 2019. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-ofthe-art. Chemosphere, 216, 449–462. https://doi.org/10.1016/j.chemosphere.2018.10.066
  • 31. Fu-R L., Dian W., Fu-hua W., Fang-fang S.., Xu W., Ying-qiong D., Xiang-xing L., Kai W. 2019. Derivation of soil Pb/Cd/As thresholds for safety of vegetable planting: A case study for pakchoi in Guangdong Province, China. Journal of Integrative Agriculture, 18(1), 179–189. https://doi.org/10.1016/S2095-3119(18)61975-6
  • 32. Li J., Wang G., Liu F., Cui L., Jiao Y. 2020. Source apportionment and ecological-health risks assessment of heavy metals in topsoil near a factory, Central China. Exposure and Health, 0123456789. https://doi.org/10.1007/s12403-020-00363-8
  • 33. Martínez Mera E.A., Torregroza Espinosa A.C., Crissien Borrero T.J., Marrugo Negrete J.L., González Márquez L.C. 2019. Evaluation of contaminants in agricultural soils in an irrigation district in Colombia. Heliyon, 5, e02217. https://doi.org/10.1016/j.heliyon.2019.e02217
  • 34. Mavimbela S.S.W., Ololade O.O., van Tol J.J., Aghoghovwia M.P. 2019. Characterizing landfill leachate migration potential of a semi-arid duplex soil. Heliyon, 5(10), e02603. https://doi.org/10.1016/j.heliyon.2019.e02603
  • 35. Ministry of the Environment. 2010. Annual report on municipal and non-municipal solid waste in Peru. (in Spanish) https://sinia.minam.gob.pe/modsinia/index.php?accion=verElemento&idElementoInformacion=1085&verPor=&idTipoElemento=&idTipoFuente=392
  • 36. Ministry of the Environment. 2014. Sixth national report on solid waste from municipal and non-municipal management, 2013. (in Spanish) http://redrrss.minam.gob.pe/material/20160328155703.pdf
  • 37. Ministry of the Environment. 2016. National plan on comprehensive solid waste management. MINAM. (in Spanish) https://sinia.minam.gob.pe/documentos/plan-nacional-gestion-integral-residuos-solidos-2016-2024
  • 38. Ministry of the Environment. 2017a. Environmental quality standards for soil in Peru. El Peruano. (in Spanish) http://www.minam.gob.pe/wp-content/uploads/2017/12/DS_011-2017-MINAM.pdf
  • 39. Ministry of the Environment. 2017b. Environmental quality standards for water in Peru. El Peruano. (in Spanish) http://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf
  • 40. Mirzaei Aminiyan M., Baalousha M., Mousavi R., Mirzaei Aminiyan F., Hosseini H., Heydariyan A. 2018. The ecological risk, source identification, and pollution assessment of heavy metals in road dust: a case study in Rafsanjan, SE Iran. Environmental Science and Pollution Research, 25(14), 13382–13395. https://doi.org/10.1007/s11356-017-8539-y
  • 41. Mirzaei M., Marofi S., Solgi E., Abbasi M., Karimi R., Riyahi Bakhtyari H.R. 2019. Ecological and health risks of soil and grape heavy metals in long-term fertilized vineyards (Chaharmahal and Bakhtiari province of Iran). Environmental Geochemistry and Health, 42, 27–43. https://doi.org/10.1007/s10653-019-00242-5
  • 42. Muller G. 1969. Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118. https://www.scienceopen.com/document?vid=4b8757955729-4c05-9813-64951e2ca488
  • 43. Muller G. 1979. Heavy metals in the sediment of the Rhine-changes seity. Umschau in Wissenschaft Und Technik, 79, 778–783.
  • 44. Nelson D.W., Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. In Methods oj Soil Analysis, Part 2 (2nd edition), American Society of Agronomy, 9, 539–579. https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2134/agronmonogr9.2.2ed
  • 45. Norouzirad R., González-Montaña J., MartínezPastor F., Hosseini, H., Foroughi-nia, B., Fooladi, A. 2018. Lead and cadmium levels in raw bovine milk and dietary risk assessment in areas near petroleum extraction industries. Science of the Total Environment, 635, 308–314. https://doi.org/10.1016/j.scitotenv.2018.04.138
  • 46. Nyiramigisha P., Komariah, Sajidan. 2021. The concentration of heavy metals zinc and lead in the soil around the Putri Cempo landfill, Indonesia. IOP Conference Series: Earth and Environmental Science, 824. https://doi.org/10.1088/1755-1315/824/1/012050
  • 47. Odonkor S.T., Frimpong K., Kurantin N. 2020. An assessment of house-hold solid waste management in a large Ghanaian district. Heliyon, 6, e03040. https://doi.org/10.1016/j.heliyon.2019.e03040
  • 48. Ogundele L.T., Ayeku P.O., Adebayo A.S., Olufemi A.P., Adejoro I. A. 2020. Pollution indices and potential ecological risks of heavy metals in the soil: a case study of municipal wastes sitein Ondo State, Southwestern, Nigeria. Polytechnica, 2016. https://doi.org/10.1007/s41050-020-00022-6
  • 49. Onwudike S., Igbozurike C., Ihem E., Osisi F., Ukah C. 2017. Quantification of heavy metals using contamination and pollution index in selected refuse dumpsites in Owerri, Imo State Southeast Nigeria. International Journal of Environment, Agriculture and Biotechnology, 2(3), 1202–1208. https://doi.org/10.22161/ijeab/2.3.25
  • 50. Rai P.K., Lee S.S., Zhang M., Tsang Y.F., Kim K.H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067
  • 51. Rehman U., Khan S., Muhammad S. 2018. Associations of potentially toxic elements (PTEs) in drinking water and human biomarkers: a case study from five districts of Pakistan. Environmental Science and Pollution Research, 25(28), 27912–27923. https://doi.org/10.1007/s11356-018-2755-y
  • 52. Samadder S.R., Prabhakar R., Khan D., Kishan D., Chauhan M.S. 2017. Analysis of the contaminants released from municipal solid waste landfill site: A case study. Science of the Total Environment, 580, 593–601. https://doi.org/10.1016/j.scitotenv.2016.12.003
  • 53. Singh R., Gautam N., Mishra A., Gupta R. 2011. Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246–253. https://doi.org/10.4103/0253-7613.81505
  • 54. Sutherland R.A. 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473
  • 55. Taylor S.R., Mclennan S.M. 1995. The geochemical the continental evolution crust. American Geophysical Union, 33(2), 241–265.
  • 56. Tian K., Huang B., Xing Z., Hu W. 2017. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological Indicators, 72, 510–520. https://doi.org/10.1016/j.ecolind.2016.08.037
  • 57. Tomlinson D.L., Wilson J.G., Harris C.R., Jeffrey D.W. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575. https://doi.org/10.1007/BF02414780
  • 58. Wu J., Lu J., Li L., Min X., Luo Y. 2018. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere, 201, 234–242. https://doi.org/10.1016/j.chemosphere.2018.02.122
  • 59. Xiao R., Guo D., Ali A., Mi S., Liu T., Ren C., Li R., Zhang Z. 2019. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environmental Pollution, 248, 349–357. https://doi.org/10.1016/j.envpol.2019.02.045
  • 60. Yang J., Ma S., Zhou J. 2018. Heavy metal contamination in soils and vegetables and health risk assessment of inhabitants in Daye, China. Journal of International Medical Research, 46(8), 3374–3387. https://doi.org/10.1177/0300060518758585
  • 61. Yu Y., Luo H., He L., Liu W., Xu R., Zhang L., Dong G., Wang Y., Wu G., Wei F. 2020. Level, source, and spatial distribution of potentially toxic elements in agricultural soil of typical mining areas in xiangjiang river basin, hunan province. International Journal of Environmental Research and Public Health, 17(16), 1–14. https://doi.org/10.3390/ijerph17165793
  • 62. Zhang Q., Yu R., Fu S., Wu Z., Chen H.Y.H., Liu H. 2019. Spatial heterogeneity of heavy metal contamination in soils and plants in Hefei, China. Scientific Reports, 9, 1–8. https://doi.org/10.1038/s41598-018-36582-y
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3bcc628-c6cd-48e9-9822-09288b15a971
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.