PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of leading factors supporting decisions in preventive quality management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main aim of the article is to present the results of research of entrepreneurs who maintain a certified quality management system in terms of leading factors supporting decisions of a preventive approach to management. Design/methodology/approach: Interview method conducted in manufacturing companies with an implemented and certified quality management system using CATI technique Findings: Research has shown that in large industrial enterprises the key stimulants of preventive actions are, above all, efficient information flow, technical and organizational order, as well as consistent pursuit of the goal. Smaller enterprises put the main emphasis on maintaining good relations with the environment, safety and ergonomics of work, as well as skillful selection of suppliers. Research limitations/implications: The authors of the paper see the need to continue research in the field of in-depth analysis of selected factors in relation to the effectiveness of the actions taken and the possibility of supporting information. Practical implications: Entrepreneurs with knowledge of key stimulants will make decisions more consciously and focused on a targeted analysis of data in order to search for relevant premises to prevent non-compliance. Originality/value: This paper concerns key factors influencing a preventive approach that can support decision-making. For the purposes of multicriteria decision-making processes, it is valuable to know the key stimuli characteristic of effective preventive actions. An additional value of the article is the showing of the factors with a differentiation by company size. This enables a more relevant focus of the research results.
Rocznik
Tom
Strony
473--500
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Poznan University of Technology, Faculty of Engineering Management
  • Poznan University of Technology, Faculty of Engineering Management
  • Poznan University of Technology, Faculty of Engineering Management
  • Poznan University of Technology, Faculty of Engineering Management
Bibliografia
  • 1. Alvarez-Alvarado, M.S., Jayaweera, D. (2019). Smart maintenance model for operational planning of static synchronous compensators. 2019 IEEE Milan PowerTech, PowerTech, 8810830.
  • 2. Askari, R. (2017). Failure mode and effect analysis: improving intensive care unit risk management processes. International Journal of Health Care Quality Assurance, Vol. 30, Iss. 3, pp. 208-215.
  • 3. Banerjee, S. (2019). Assessment of the trends and challenges in quality management system/iso-9001:2008/implementation: The case of agro-food industries in India. International Journal of Advanced Science and Technology, Vol. 28, Iss. 17, pp. 542-595.
  • 4. Bank, J. (1996). Zarządzanie przez jakość. Warszawa: Wyd. Gebethner.
  • 5. Barbu, C.A., Andreica, M., Popescu, I.-P. (2018). Modern approaches for maintenance forecasting management, Quality - Access to Success, 19(S1), pp. 53-58.
  • 6. Beltran, M.I., Bou, L.J.C., Roca, P.V., Escrig, T.A.B. (2017). The relationship between high performance work systems and employee proactive behaviour: role breadth self-efficacy and flexible role orientation as mediating mechanisms. Human Resource Management Journal, 27(3), pp. 403-422, doi:10.1111/1748-8583.12145.
  • 7. Biggs, D.M., Swailes, S., Baker, S. (2016). The measurement of worker relations: the development of a three-component scale. Leadership & Organization Development Journal, 37(1), pp. 2-12, https://doi.org/10.1108/LODJ-08-2012-0098.
  • 8. Bjerke, R. (2020). Towards a HR framework for developing a health-promoting performance culture at work: A Norwegian health care management case study. International Journal of Environmental Research and Public Health, 17(24), 9164, pp. 1-20.
  • 9. Carmignani, G. (2009). Modified QFD and problem-solving techniques integrated approach implementing corrective actions: a case study in an Italian manufacturing plant. Quality and Reliability Engineering International, Vol. 25, Iss. 2, pp. 241-252.
  • 10. Chittipaka, V., Aluvala, R. (2019). TQM and organizational performance in Indian manufacturing companies. International Journal of Innovative Technology and Exploring Engineering, 8(12), pp. 4440-4445.
  • 11. Chluski, A., Ziora, L. (2015). The Role of Big Data Solutions in the Management of Organizations. Review of Selected Practical Examples. Procedia Computer Science, Vol. 65, pp. 1006-1012.
  • 12. Chun, W.C. (2002). Information Management For The Intelligent Organization: The Art Of Scanning The Environment. New Jersey: Information Today Inc.
  • 13. Czekaj, J. (2012). Podstawy zarządzania informacją. Kraków: Uniwersytet Ekonomiczny w Krakowie.
  • 14. Edmunds, A., Morris, A. (2000). The problem of information overload in business organisations: a review of the literature. International Journal of Information Management, Vol. 20, Iss. 1, pp. 17-28.
  • 15. Ezrahovich, A.Y., Vladimirtsev, A.V., Livshitz, I.I., Lontsikh, P.A., Karaseva, V.A. (2017). Risk-based thinking of ISO 9001:2015 - The new methods, approaches and tools of risk management. Proceedings of the 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies", IT and QM and IS 2017, art. no. 8085872, pp. 506-511.
  • 16. Figge, F. (2005). Value-based environmental management. From environmental shareholder value to environmental option value. Corporate Social Responsibility and Environmental Management, 12(1), pp. 19-30, https://doi.org/10.1002/csr.74.
  • 17. Franciosi, C., Lambiase, A., Miranda, S. (2017). Sustainable Maintenance: a Periodic Preventive Maintenance Model with Sustainable Spare Parts Management. IFAC- PapersOnLine, Vol. 50, Iss. 1, pp. 13692-13697.
  • 18. Fraser, J. (2010). The many faces of quality data. Managing Automation, 25(6).
  • 19. Greguras, G.J., Diefendorff, J.M. (2010). Why does proactive personality predict employee life satisfaction and behaviors? A field investigation of the mediating role of the self-concordance model. Personnel Psychology, 63, pp. 539-560.
  • 20. Hardoroudi, A.H., Dareshuri, A.F., Sarkan, H.Md. et al. (2011). Robust Corrective and Preventive Action (CAPA). 2011 IEEE International Systems Conference (SYSCON 2011), pp. 177-181.
  • 21. Ivanov, N. (2020). Decision making with visualizations: a cognitive framework for quality management in construction. IOP Conference Series: Materials Science and Engineering 869(6), 062002.
  • 22. Junquera, B., Del Brio, J.A. (2016). Preventive command and control regulation: A Case Analysis. Sustainability, 8(1), pp. 1-17.
  • 23. Kaganov, M. (2001). Keep your web site under control. Quality Progress, 34(11), pp. 51-56.
  • 24. Katsuki, A., Miriam, W. (2017). The Role of Ambidexterity in Managing Buyer-Supplier Relationships: The Toyota Case. Organization Science, 28(6), pp. 1080-1097, https://doi.org/10.1287/orsc.2017.1156.
  • 25. Kim, E., Lim, C. (2020). Survey of risk-based quality management status and establishment of operational model in clinical trials. Yonsei Medical Journal, 61(5), pp. 423-430.
  • 26. Klimczak, W. (2014). Zarządzanie ryzykiem czy działania zapobiegawcze w systemie zarządzania? Problemy Jakości, 46, nr 2, pp. 16-21.
  • 27. Kovalyova, Y.V., Zhdanov, D.A. (2018). Comprehensive Monitoring of a Company's Activities as a Tool of Preventive Management. Upravlenets - The Manager, Vol. 9, Iss. 4, pp. 28-39.
  • 28. Ladegaard, Y., Skakon, J., Elrond, A.F., Netterstrom, B. (2019). How do line managers experience and handle the return to work of employees on sick leave due to work-related stress? A one-year follow-up study. Disability and Rehabilitation, 41(1), pp. 44-52.
  • 29. Lamptey, G., Labi, S., Li, Z. (2008). Decision support for optimal scheduling of highway pavement preventive maintenance within resurfacing cycle. Decision Support Systems, 46, pp. 376-387.
  • 30. Larbi Rebaiaia, M., Ait-kadi, D. (2020). Maintenance policies with minimal repair and replacement on failures: analysis and comparison. International Journal of Production Research, 59(23), pp. 6995-7017.
  • 31. Lis, T., Tomski, P., Bajdor, P. (2014). The Optimization of Information Logistics as the Determinant of Competitive Advantage of an Enterprise in Turbulent Environment. Logistyka, 5, pp. 55-60.
  • 32. Lonnqvist, A., Pirttimaki, V. (2006). The measurement of business intelligence. Information Systems Management, 23(1), pp. 32-40.
  • 33. Macot, M. (2003). Corrective/preventive action: Simplified process. ASQ'S 57th Annual Quality Congress Proceedings: Expanding Horizon: Global, Personal, Tools, Networking, Solutions, pp. 349-357.
  • 34. Majanoja, A.-M., Linko, L., Leppanen, V. (2017). Evaluation factors in successful global selective outsourcing operations. International Journal of Services, Technology and Management, Vol. 23, Iss. 5-6, pp. 528-549.
  • 35. Mantura, M. (2012). Comperative analysis of the category of quality information. In: M. Goliński, M. Szafrański (Eds.), Integrated support system for access to information in urban space with use of GPS and GIS systems (pp. 7-30). Poznań: Wyd. Politechniki Poznańskiej.
  • 36. Misztal, A., Belu, N. (2016). Model of areas for identifying risks influencing the compliance of technological processes and products. IOP Conf. Series: Materials Science and Engineering, 145, 042003. IOP Publishing.
  • 37. Mohanty, J.K., Dash, P.R., Pradhan, P.K. (2020). FMECA analysis and condition monitoring of critical equipments in super thermal power plant. International Journal of Systems Assurance Engineering and Management, 11(3), pp. 583-599.
  • 38. Nkosi, N., Sukdeo, N., Bakama, E., Molefe, M. (2020). Managing supplier quality in the supply chain of an electronics manufacturing company, Towards the Digital World and Industry X.0. Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, pp. 1028-1038.
  • 39. Nowduri, S. (2019). Management information systems and business decision making: review, analysis, and recommendations. Journal of Management and Marketing Research, Vol. 3, Iss. 205, pp. 2-5.
  • 40. Oakland, J.S. (2004). Oakland on quality management. London-New York: Routledge Taylor&Francis Group.
  • 41. Olszewska, B., Piwoni-Krzeszowska, E. (2014). Factors influencing company relations with market stakeholders, in the face of crises in company development. Management and Production Engineering Review Journal, 5(2), pp. 45-53, DOI 10.2478/mper-2014-0016.
  • 42. Oribhabor, Ch., Anyanwu, Ch. (2019). Research Sampling and Sample Size Determination: A practical Application. Journal of Educational Research, 2(1), pp. 47-56.
  • 43. Palmarini, R., Erkoyuncu, J.A., Roy, R. (2017). An Innovative Process to Select Augmented Reality (AR) Technology for Maintenance. Procedi CIRP, 59, pp. 23-28.
  • 44. Pâun, A.P., Monea, M., Dura, C. (2019). Some practical tools to mitigate occupational safety and health risks within the industrial environment. Quality - Access to Success, 20, pp. 429-434.
  • 45. Sahoo, R., Sahoo, C.K. (2019). Organizational justice, conflict management and employee relations: The mediating role of climate of trust. International Journal of Manpower, 40(4), pp. 783-799, https://doi.org/10.1108/IJM-12-2017-0342.
  • 46. Salem, M.A., Shawtari, F.A., Shamsudin, M.F., Hussain, H.I. (2016). The relation between stakeholders’ integration and environmental competitiveness. Social Responsibility Journal, 12(4), pp. 755-769, https://doi.org/10.1108/SRJ-12-2015-0189.
  • 47. Schatter, F. et al. (2019). A decision support methodology for a disaster-caused business continuity management. Decision Support Systems, 118, pp. 10-20.
  • 48. Selvik, Bansal, Abrahamsen (2021). On the use of criteria based on the SMART acronym to assess quality of performance indicators for safety management in process industries. Journal of Loss Prevention in the Process Industries, 70(104392).
  • 49. Seo, J., Bae, S. (2017). Developing product liability index for Korean manufacturing companies. Quality Innovation Prosperity, 21(2), pp. 20-36
  • 50. Shahin, A., Aminsabouri, N., Kianfar, K. (2018). Developing a Decision Making Grid for determining proactive maintenance tactics: A case study in the steel industry. Journal of Manufacturing Technology Management, 29(8), pp. 1296-1315.
  • 51. Shojaie, A.A., Kahedi, E. (2019). Auto parts manufacturing quality assessment using design for six sigma (DFSS), case study in ISACO company. International Journal of Systems Assurance Engineering and Management, Vol. 10, Iss. 1, pp. 35-43.
  • 52. Solana-Ibanez, J., Caravaca-Garratôn, M. (2021). Stakeholder engagement and corporate social reputation: The influence of exogenous factors on efficiency performance (stakeholder engagement and exogenous factors. Corporate Social Responsibility and Environmental Management, 6, pp. 1-15. https://doi.org/10.1002/csr.2167.
  • 53. Szkoda, J. (2012). Systemy zarządzania jakością w organizacjach. Warszawa: Instytut Transportu Samochodowego.
  • 54. Tashi, T., Mbuya, V., Gangadharappa, H. (2016). Corrective Action and Preventive Actions and its Importance in Quality Management System: A Review. International Journal of Pharmaceutical Quality Assurance, 7(1), pp. 1-6.
  • 55. Thomas, J.P., Whitman, D.S., Viswesvaran, C. (2010). Employee proactivity in organizations: A comparative meta-analysis of emergent proactive constructs. Journal of Occupational & Organizational Psychology, 83(2), pp. 275-300, https://doi.org/10.1348/ 096317910X502359.
  • 56. Vilcu, C., Niculescu, F., Mitru, A., Nechifor, C., Borzea, C.-I., Cornea, C. (2017). 'HolderCPS' - A new type data recorder system for proactive maintenance to rotary blade machines. 10th International Symposium on Advanced Topics in Electrical Engineering ATEE 2017, 7905190, pp. 655-660.
  • 57. Wakiru, J. et al. (2020). Towards an innovative lubricant condition monitoring strategy for maintenance of ageing multi-unit systems. Reliability Engineering and System Safety, 204, 107200.
  • 58. Walecka, A. (2018). Analysis of the relationship between the enterprise and the environment in the context of managing the Relational Capital. Management, 22(2), pp. 25-41, https://doi.org/10.2478/manment-2018-0021.
  • 59. Wang, N. et al. (2020). An active preventive maintenance approach of complex equipment based on a novel product-service system operation mode. Journal of Cleaner Production, 277, 123365.
  • 60. Wójcik, M. (2016). Big data in information management - a review of selected issues. In: S. Cisek (Ed.), Inspiracje i innowacje: zarządzanie informacją w perspektywie bibliologii i informatologii (pp. 61-70). Kraków: Biblioteka Jagiellońska.
  • 61. Yeoh, W., Koronios, A. (2010). Critical Success Factors for Business Intelligence Systems. Journal of Computer Information Systems, Vol. 50, No. 3, pp. 23-32.
  • 62. Zhang, J, Bal, P.M., Akhtar, M.N., Long, L., Zhang, Y., Ma, Z. (2019). High- performance work system and employee performance: the mediating roles of social exchange and thriving and the moderating effect of employee proactive personality. Asia Pacific Journal of Human Resources, 57(3), pp. 369-395, doi:10.1111/1744-7941.12199.
  • 63. Zhang, L.-Y., Zheng, Q. (2015). Research and analysis on corrective and preventive action of Chinese pharmaceutical enterprises. Chinese Journal of New Drugs, 24(17), pp. 1968-1974.
  • 64. Zupanets, K., Bezugla, N., Tarasenko, O., Komarova, A. (2020). HACCP as a risk management tool for ensuring biosamples quality. Accreditation and Quality Assurance, 25(5-6), pp. 383-386.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3af5c20-4cce-4811-9052-75204c9c0726
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.