PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of bed particle size in heat transfer to membrane walls of supercritical CFB boiler

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental research has been carried out in a supercritical circulating fluidized bed combustor in order to indicate the effect of the bed particle size on bed-to-wall heat transfer coefficient. The bed inventory used were 0.219, 0.246 and 0.411 mm Sauter mean particles diameter. The operating parameters of a circulating fluidized bed combustor covered a range from 3.13 to 5.11 m/s for superficial gas velocity, 23.7 to 26.2 kg/(m2s) for the circulation rate of solids, 0.33 for the secondary air fraction and 7500 to 8440 Pa pressure drop. Furthermore, the bed temperature, suspension density and the main parameters of cluster renewal approach were treated as experimental variables along the furnace height. The cluster renewal approach was used in order to predict the bed-to-wall heat transfer coefficient. A simple semi-empirical method was proposed to estimate the overall heat transfer coefficient inside the furnace as a function of particle size and suspension density. The computationally obtained results were compared with the experimental data of this work.
Rocznik
Strony
207--223
Opis fizyczny
Bibliogr. 29 poz., il.
Twórcy
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dąbrowskiego 73, 42-200 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dąbrowskiego 73, 42-200 Częstochowa, Poland
autor
  • Tauron Generation S.A., Lagisza Power Plant, Pokoju 14, 42-250 Będzin, Poland
Bibliografia
  • [1] HUPA M.: Current status and challenges within fluidized bed combustion. Advanced Combustion and Aero-thermal Technologies NATO Sciences for Peace and Security Series C: Environ. Secu. 1(2007), 87-101.
  • [2] KOORNNEEF J., JUNGINGERM., FAAIJA.: Development of fluidized bed combustion - An overview of trends, performance and cost. Prog. Energ. Combust. Sci. 33(2007), 1, 19-55.
  • [3] ZIMA W., GRĄDZIEL S., CEBULA A.: Modeling of heat and flow phenomena occurring in water wall tubes of boilers for supercritical steam parameters. Arch. Thermo-dyn. 31(2010), 3, 19-36.
  • [4] TALER J., TALER D., SOBOTA T., DZIERWA P.: New technique of the local heat flux measurement in combustion chambers of steam boilers. Arch. Thermodyn. 32(2011), 3, 103-116.
  • [5] TALER J., TALER D., KOWAL A.: Measurements of absorbed heat flux and water-side heat transfer coefficient in water wall tubes. Arch. Thermodyn. 32(2011), 1, 77-88.
  • [6] ANDERSSON B.: Effects of bed particle size on heat transfer in circulating fluidized bed boilers. Powder Technol. 87(1996), 3, 239-248.
  • [7] BIS Z.: CFB boilers. Theory and practice. Czestochowa University Press, Czestochowa 2010 (in Polish).
  • [8] BASU P., NAG P.K.: An investigation into heat transfer in circulating fluidized beds. Int. J. Heat Mass Tran. 30(1987), 11, 2399-2409.
  • [9] PAGLIUSO J.S., LOMBARDI G., GOLDSTEIN L.: Experiments on the local heat transfer characteristics of a circulating fluidized bed. Exp. Therm. Fluid Sci. 20(2000), 3-4, 170-179.
  • [10] GUNGOR A.: A study on the effects of operational parameters on bed-to-wall heat transfer. Appl. Therm. Eng. 29(2009), 11-12, 2280-2288.
  • [11] XIE D., BOWEN B.D., GRACE J.R., LIM C.J.: Two-dimensional model of heat transfer in circulating fluidized beds. Part II: Heat transfer in a high density CFB and sensitivity analysis. Int. J. Heat Mass Tran. 46(2003), 12, 2193-2205.
  • [12] WERDERMANN C.C., WERTHER J.: Heat transfer in large-scale circulating fluidized bed combustors of different sizes. In: Circulating Fluidized Bed Technology IV (A.A. Avidan Ed.), AIChE, New York 1994, 428-435.
  • [13] GOLRIZ M.R., SUNDEN B.: An analytical-empirical model to predict heat transfer coefficient in circulating fluidized bed combustors. Heat Mass Transfer 30(1995), 377-383.
  • [14] Wu R.L., GRACE J.R., LIM C.J., BRERETON C.: Suspension-to-surf ace heat transfer in a circulating fluidized bed combustor. AIChE J., 35(1989), 10, 1685-1691.
  • [15] LUAN W., LIM C.J., BRERETON C.M.H., BOWEN B.D., GRACE J.R.: Experimental and theoretical study of total and radiative heat transfer in circulating fluidized beds. Chem. Eng. Sci. 54(1999), 17, 3749-3764.
  • [16] HAN G.Y., CHO Y.J.: Radiative heat transfer in a circulating fluidized bed coal combustor. Powder Technol. 102(1999), 3, 266-273.
  • [17] ERIKSSON M., GORLITZ M.R.: Radiation heat transfer in circulating fluidized bed combustors. Int. J. Therm. Sci. 44(2005), 4, 399-409.
  • [18] SHI D., NICOLAI R., REH L.: Wall-to-bed heat transfer in circulating fluidized bed boilers. Chem. Eng. Process. 37(1998), 287-293.
  • [19] WERTHER J.: Fluid dynamics, temperature and concentration fields in large-scale CFB combustors. In: Circulating Fluidized Bed Technology - VIII. International Academic Publishers, Beijing 2005, 1-25.
  • [20] NIRMAL VUAY G., REDDY B.V.: Effect of dilute and dense phase operating conditions on bed-to-wall heat transfer mechanism in a circulating fluidized bed combustor. Int. J. Heat Mass Tran. 48(2005), 3275-3283.
  • [21] WU R.L., GRACE J.R., LIM C.J.: A model for heat transfer in circulating fluidized beds. Chem. Eng. Sci. 45(1990), 12, 3389-3398.
  • [22] NOYMER P.D., GLICKSMAN L.R.: Descent velocities of particle clusters at the wall of a circulating fluidized bed. Chem. Eng. Sci. 55(2000), 22, 5283-5289.
  • [23] DUTTA A., BASU P.: An improved cluster renewal model for estimation of heat transfer coefficient on the water-walls of commercial circulating fluidized bed boilers. J. Heat Trans. - T. ASME 126(2004), 6, 1040-1043.
  • [24] BASU P.: Combustion and gasification in fluidized beds. Taylor & Francis Group, 2006.
  • [25] BLASZCZUK A., LESZCZYNSKI J., NOWAK W.: Simulation model of the mass balance in a supercritical circulating fluidized bed combustor. Powder Technol. 246(2013), 313-326.
  • [26] BLASZCZUK A., NOWAK W., JAGODZIK Sz.: Effects of operating conditions on deNOx system efficiency in supercritical circulating fluidized bed boiler. J. Power Technol. 93(2013), 1, 1-8.
  • [27] REDDY B.V., BASU P.: A model for heat transfer in a pressurized circulating fluidized bed furnace. Int. J. Heat Mass Tran. 44(2001), 15, 2877-2887.
  • [28] REDDY B.V.: Fundamental heat transfer mechanism between bed-to-membrane water-walls in circulating fluidized bed combustors. Int. J. Energy Res. 27(2003), 9, 813-824.
  • [29] GUPTA A.V.S.S.K.S., NAG P.K.: Bed-to-wall heat transfer behavior in a pressurized circulating fluidized bed. Int. J. Heat Mass Tran. 45(2002), 16, 3429-3436.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3aa21b1-b3f1-4fec-9bf4-c8541b0d8228
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.