PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Bioactivity of PLGA-gel-derived bioglass composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of PLGA (poly L-lactide-co-glycolide) based composites modified with gel-derived glasses in the form of foils were obtained by solvent casting procedure. As a modifier, glass particles with different chemical compositions from the CaO–SiO2, CaO–P2O5–SiO2,and Al2O3–SiO2 systems were used. All glasses were synthesized by the sol-gel process. Evaluation of bioactive properties of obtained composites was made on the basis of surface changes occurring during contact with simulated body fluid. The changes of Ca, P and Si ions concentration in SBF after incubation of composites were also measured. The result showed that all composites with bioglasses (CaO–SiO2, CaO–P2O5–SiO2) exhibit formation of calcium phosphates layer after SBF test, however, kinetics of Ca, Si ion release and P uptake from SBF was dependent on bioglass chemical composition. The higher solubility, as well as faster consumption of phosphorus from SBF, was observed for materials from CaO–SiO2 (T1/PLGA, S1/PLGA) compared to composites with respective bioglass particles from the CaO–P2O5–SiO2(T2/PLGA, S2/PLGA). Our results showed that rate of Si and Ca release from the gel-derived glasses and P uptake from SBF are dependent on both: the concentration of respective ions in the materials and the presence of phosphates in their structure. For materials modified with gel-derived glasses from Al2O3–SiO2 system no significant surface changes during contact with SBF were observed, and it seems that their behavior in physiological solution indicate that they are bio-inert materials.
Rocznik
Strony
27--34
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Fac of Mat. Sci and Ceramic, Dept. of Glass Technology and Amorphous Coatings, Ave Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Fac of Mat. Sci and Ceramic, Dept. of Glass Technology and Amorphous Coatings, Ave Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Fac of Mat. Sci and Ceramic, Dept. of Glass Technology and Amorphous Coatings, Ave Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Fac of Mat. Sci and Ceramic, Dept. of Ceramics and Refractories, Ave Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Fac of Mat. Sci and Ceramic, Dept. of Glass Technology and Amorphous Coatings, Ave Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Fac of Mat. Sci and Ceramic, Dept. of Glass Technology and Amorphous Coatings, Ave Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Dziadek M., Pawlik J., Cholewa-Kowalska K., Szkła bioaktywne w inżynierii tkankowej, Acta BioOpt. Inform. Med., 2014; 20(3):156–165.
  • 2. Pamula E., Kokoszka J., Cholewa-Kowalska K., Laczka M., Kantor L., Niedzwiedzki L., Reilly G.C., Filipowska J., Madej W., Kolodziejczyk M., Tylko G., Osyczka A.M., Degradation, bioactivity and osteogenic potential of composites made of PLGA and two different sol-gel bioactive Glassem, Ann. Biomed. Eng, 2011; 39(8):2114–2129.
  • 3. Dziadek M., Zagrajczuk B., Menaszek E., Wegrzynowicz A., Pawlik J., Cholewa-Kowalska K., Gelderived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition, Ceram. Int., 2016; 42(5):5842–5857.
  • 4. O'Brien F.J., Biomaterials & scaffolds for tissue engineering, Mater. Today, 2011; 14(3):88–95.
  • 5. Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 2011; 32(11):2757–2774.
  • 6. Rahaman M.N., Day D.E., Bal B.S., Fu Q., Jung S.B., Bonewald L.F., Tomisa A.P., Bioactive glass in tissue engineering, Acta Biomater., 2011; 7(6):2355–2373.
  • 7. Dobrzański P., Kasperczyk J., Janeczek H., Bero M., Synthesis of Biodegradable Copolymers with the Use of Low Toxic Zirconium Compounds. 1. Copolymerization of Glycolide with l-Lactide Initiated by Zr(Acac)4, Macromolecules, 2001; 34(15):5090–5098.
  • 8. Zagrajczuk B., Dziadek M., Olejniczak Z., Cholewa-Kowalska K., Laczka M., Structural and chemical investigation of the gel-derived bioactive materials from the SiO2–CaO and SiO2-CaOP2O5 systems, Ceram. Int.,2017; 43(15), 12742–12754.
  • 9. Ohtsuki C., Kushitani H., Kokubo T., Kotani S., Yamamuro T., Apatite formation on the surface of Ceravital-type glass-ceramic in the body, J. Biomed. Mater. Res., 1991; 25:1363–1370.
  • 10. Letaief N., Lucas-Girot A., Oudadesse H., Meleard P., Pott T., Jelassi J., Dorbez-Sridi R., Effect of aging temperature on the structure, pore morphology and bioactivity of new sol–gel synthesized bioglass, J. Non-Cryst. Solids, 2014; 402:194–199.
  • 11. Saravanapavan P., Jones J.R., Pryce R.S., Hench L.L., J. Biomed. Mater. Res., Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), 2003; 66(1):110–119.
  • 12. Vallet-Regi M., Izquierdo-Barba I., Salinas A.J., Influence of P2O5 on crystallinity of apatite formed in vitro on surface of bioactive glasses, J. Biomed. Mater. Res,.1999; 46(4):560–565.
  • 13. Vallet-Regi M., Romero AM, Ragel C.V., LeGeros R.Z., J. Biomed. Mater. Res.,1999; 44(4):416– 421.
  • 14. Taddei P., Tinti A., Reggiani M., Fegnano C., J. Mol. Struct, 2005; 744:135–143.
  • 15. Lucas-Goriot A., Mezahi F.Z., Mami M., Oudadesse H., Harabi A., Le Floch M., Sol-gel synthesis of a new composition of bioactive glass in the quaternary system SiO2-CaO-Na2O-P2O5, J. NonCryst. Solids, 2011 ; 357(18):3322–3327.
  • 16. Jagan Mohnini G., Krishnamacharyulu N., Sahaya Baskaran G., Venkateswara Rao P., Veeraiah N., Studies on influence of aluminium ions on the bioactivity of B2O3-SiO2-P2O5-Na2O-CaO glass system by means of spectroscopic studies, Appl. Surf. Sci., 2013; 287:46–53.
  • 17. Gerhardt L.-C., Boccaccini A.R,. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering, Materials (Basel), 2019; 3(7):3867–3910.
  • 18. Sun J.Y., Yang Y.S., Zhong J., Greenspan D.C., The effect of the ionic products of Bioglass® dissolution on human osteoblasts growth cycle in vitro, J. Tissue Eng. Reg. M., 2007; 1(4):281– 286.
  • 19. Mami M., Lucas-Girot A., Oudadesse H., Dorbez-Sridi R., Mezahi F.Z., Dietrich E., Investigation of the surface reactivity of a sol–gel derived-glass in the ternary system SiO2–CaO–P2O5, Appl. Surf. Sci., 2008; 254(22):7386–7393.
  • 20. Rámila A., Vallet-Regi M., Static and dynamic in vitro study of a sol-gel glass bioactivity, Biomaterials, 2001; 22(16):2301–2306.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3a91d86-7108-46db-b57f-c651a8c84574
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.