PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Soil Moisture on the Epigeic Arthropods Diversity in Steppe Landscape

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The consequences of global climate change are a decrease in precipitation as well as an increase in the length of the period with high temperatures from spring to autumn. The climate change intensified the negative consequences of land reclamation and regulation of rivers by dams in Ukraine in the 20th century. The modern landscape of the Circum-Pontic and Circum-Azov regions in Ukraine has undergone desertification, and a multiple reduction in the freshwater runoff has manifested itself in a violation of the water balance of soils and their salinization. In addition to the climate change and anthropic landscape transformations, most upland areas in southern Ukraine have been converted into farmland, systematically fertilized and treated with pesticides and herbicides. Total plowing of the territory also led to soil erosion and degradation. The global climate change and the impact of human activity have affected the diversity of the steppe fauna as well. The questions of the influence of soil humidity on the diversity of epigeic arthropods were considered on the example of ground beetles (Coleoptera, Carabidae). Soil moisture is one of the key factors that determines their diversity.
Rocznik
Strony
137--147
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Schmalhausen Institute of Zoology NAS of Ukraine, B. Khmelnitsky Str. 15, 01030 Kyiv, Ukraine
  • Sumy Makarenko State Pedagogical University, Romenska Str. 87, 40002 Sumy, Ukraine
  • Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka 40, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Alignan J.F., Debras J.F., Jaunatre R., Dutoit T. 2018. Effects of ecological restoration on beetle assemblages: results from a large scale experiment in a Mediterranean steppe rangeland. Biodiversity Conservation. doi.org/10.1007/s10531–018–1528–8
  • 2. Amador J.A., Görres J.H. 2007. Microbiological characterization of the structures built by earworms and ants in an agriculture field. Soil Biology and Biochemistry, 39, 2070–2077.
  • 3. Andersen J. 2000. What is the origin of the carabid beetle fauna of dry, anthropogenic habitats in western Europe? Journal of Biogeography, 27, 795–806.
  • 4. Andrew N.R. 2013. Population dynamics of insect populations: impacts of a changing climate. In: Rohde K, ed. The balance of nature and climate change. Cambridge University Press, 311–324.
  • 5. Andrew N.R., Hill S.J., Binns M., Md Bahar H., Ridley E.V., Jung M.-P., Fyfe C., Yates M., Khusro M. 2013. Assessing insect responses to climate change: What are we testing for? Where should we be heading? PeerJ, 1–11.
  • 6. Babko R., Szulżyk-Cieplak J., Danko Y., Duda S., Kirichenko-Babko M., Łagód G. 2019. Effect of Stormwater System on the Receiver. Journal of Ecological Engineering, 20(6), 52–59
  • 7. Baranovská E., Chajma P., Knapp M. 2019. Desiccation resistance in Central European carabid species: effects of body size and habitat preferences. ARPHA Conference Abstracts 2, e38513.
  • 8. Belovsky G.E., Slade J.B. 2000. Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences USA 97, 14,412–14,417.
  • 9. Berg Å., Ehnström B., Gustavsson L., Hallingbäck T., Jonsell M., and Weslien J. 1994. Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conservation Biology, 8, 718–731.
  • 10. Brose U. 2003. Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity? Oecologa, 135, 407–413.
  • 11. Butchart S.H.M., Walpole M., Collen B., Van Strien A., Scharlemann J.P.W., ...., Watson R. 2010. Global Biodiversity: indicators of recent declines. Science, 328, 1164–1168, 10.1126/science.1187512
  • 12. Ceballos G., Ehrlich P.R., Barnosky A.D., García A.R., Pringle R.M., Palmer T.M. 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv., doi: 10.1126/sciadv.1400253
  • 13. Cinītis R.J., Vilks M.K. 1962. Daily number dynamics of carabid beetles in the potato field agrocenosis. In: Results of scientific investigations into plant protection in the Baltic region of the USSR. MSH 4 (2), 50–51. Riga. (in Russian)
  • 14. Coleman D.C., Crossley D.A., Hendrix P.F. 2004. Fundamentals of Soil Ecology, second ed. Elsevier, Amsterdam.
  • 15. Cremene C., Groza G., Rakosy L., Schileyko A.A., Baur A., Erhardt A. & Baur B. 2005. Alterations of steppe-like grasslands in Eastern Europe: a threat to regional biodiversity hotspots. Conservation Biology, 19, 1606–1618.
  • 16. Culliney T. 2013. Role of arthropods in maintaining of soil fertility. Agriculture, 3, 629–659. Doi: 10.3390/agriculture3040629
  • 17. Dirzo R., Young H.S., Galetti M., Ceballos G., Isaac N.J.B., and Collen B. 2014. Defaunation in the Anthropocene. Science, 345(6195), 401–406.
  • 18. Dutoit T., Jaunatre R., Buisson E. 2013. Mediterranean steppe restoration in France. In: Clewell A, Aronson J (eds) Ecological restoration: principles, values, and structure of an emerging profession. Island Press, Washington, DC, 60–64.
  • 19. Fournier E., Loreau M. 1999. Effects of newly planted hedges on ground-beetle diversity (Coleoptera, Carabidae) in an agricultural landscape. Ecography, 22, 87–97.
  • 20. Halaj J., Cady A.B., Uetz G.W. 2000. Modular habitat refugia enhance generalist predators and lower plant damage in soybeans. Environmental Entomology, 29, 383–393.
  • 21. Hammond P.M. 1998. Riparian and floodplain arthropod assemblages: their characteristics and rapid assessment. In: Bailey RG, José PV, Sherwood BR (eds) United Kingdom floodplains. Westbury Publishing, Otley, 238–282.
  • 22. Harrison J., Frazier M.R., Henry J.R., Kaiser A., Klok C.J., Rascon B. 2006. Responses of terrestrial insects to hypoxia or hyperoxia. Respiratory Physiology and Neurobiology, 154, 4–17.
  • 23. Hoback W.W., Stanley D.W. 2001. Insects in hypoxia. Journal of Insect Physiology, 47, 533–542.
  • 24. Hocking T.D. 2018. directlabels: Direct Labels for Multicolor Plots. R package version 2018.05.22. https://CRAN.R-project.org/package=directlabels
  • 25. Holland J.M., Reynolds C.J.M. 2003. The impact of soil cultivation on arthropod (Coleoptera and Aranea) emergence on arable land. Pedobiologia, 47, 18–191.
  • 26. Hummel R.L., Walgenbach J.F., Hoyt G.D., Kennedy G.G. 2002. Effects of vegetable production system on epigeal arthropod populations. Agriculture, Ecosystems and Environment, 93 (1–3), 177–188.
  • 27. Jaworski T., Hilszczanski J. The effect of temperature and humidity changes of insects development and their impact on forest ecosystems in the context of expected climate change. Forest Research Papers, 2013, 74(4), 345–355.
  • 28. Kassambara A., Mundt F. 2017. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.5. https://CRAN.Rproject.org/package=factoextra
  • 29. Kimberling D.N., Karr J.R., Fore L.S. 2001. Measuring human disturbance using terrestrial invertebrates in the shrub-steppe of eastern Washington (USA). Ecological Indicators, 1, 63–81. Doi: 10.1016/S1470–160X(01)00009–7
  • 30. Kirichenko M.B., Babko R.V. The structure assemblage of ground beetles (Coleoptera: Carabidae) of the Tiligulsky RLP. Zoological Science in Modern Society: Materials Ukrainian Sciences. Conference, dedicated to the 175th anniversary of the Department of Zoology (September 15–18, 2009, Kyiv – Kanev). Kiev-Kanev, 2009. 194–197. (in Ukrainian)
  • 31. Kirichenko-Babko M., Łagód G., Majerek D., Franus M., Babko R. 2017. The effect of landscape on the diversity in urban green areas. Ecological Chemistry and Engineering S,24(4), 613–625.
  • 32. Kirichenko M.B., Nazarenko V.Y. 2011. Ground beetles and long-nosed (Carabidae, Curculionoidea) in the conditions of the system of ravines of the Tiligulsky RLP. Materials of 2 scientific readings in memory of Sergey Tarashchuk, April 6–11, 2011, Mykolaiv, 61–67. (in Ukrainian)
  • 33. Lott D.A. 1996. Beetles by rivers and the conservation of riparian and floodplain habitats. In: Eyre MD (ed) Environmental monitoring, surveillance and conservation using invertebrates. EMS publications, Newcastle upon Tyne, 36–41
  • 34. Lott D.A. 2003. An annotated list of wetland ground beetles (Carabidae) found in the British Isles including a literature review of their ecology. English Nature, Peterborough.
  • 35. Łagód G., Duda S.M., Majerek D., Szutt A., Dołhańczuk-Śródka A. 2019. Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP. Processes, 7, 251.
  • 36. Maechler M., Rousseeuw P., Struyf A., Hubert M., Hornik K. 2019. cluster: Cluster Analysis Basics and Extensions. R package version 2.0.8.
  • 37. Majerek D., Guz Ł., Suchorab Z., Łagód G., Sobczuk H. 2017. The application of the statistical classifying models for signal evaluation of the gas sensors analyzing mold contamination of the building materials. AIP Conference Proceedings, 1866, 040024.
  • 38. Moore J.C., Berlow E.L., Coleman D.C., de Ruiter P.C., Dong Q., et al. 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7, 584–600.
  • 39. Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.
  • 40. Nagumanova N.G. 2007. Spatial differentiation of invertebrates in soils of the Transural Steppe Region. Entomological Review, 87, (6), 692–700.
  • 41. Nepstad D.C., et al. 2002. The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 107(D20), 8085, doi:10.1029/2001JD000360
  • 42. Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P.M., Stevens H.H., Szoecs E., Wagner H. 2019. Vegan: Community Ecology Package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan
  • 43. Ouchtati N., Doumandji S., Brandmayr P. 2012. Comparison of ground beetle (Coleoptera: Carabidae) assemblages in cultivated and natural steppe biotopes of the semi-arid region of Algeria. African Entomology, 20 (1), 134–143. Doi: 10.4001/003.020.0117.
  • 44. Parmasan C. 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13, 1860–1872
  • 45. Perner J., Malt S. 2003. Assessment of changing agricultural land use: response of vegetation, grounddwelling spiders and beetles to the conversion of arable land into grassland. Agric Ecosyst Environ 98, 169–181. doi.org/10.1016/S0167-8809(03)00079-3.
  • 46. Pliashechnyk V., Danko Y., Łagód G., Drewnowski J., Kuzmina T., Babko R. 2018. Ciliated protozoa in the impact zone of the Uzhgorod treatment plant. E3S Web of Conferences. 30, 02008
  • 47. R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/.
  • 48. Romankina M.Yu., Sharova I.Kh. 2011. Complexes of ground beetles of forest phytocenoses of northern forest-steppe. Vestnik TGU, 16 (3), 948–952. (in Russian)
  • 49. Saska P. 2007. Diversity of carabids (Coleoptera: Carabidae) within two Dutch cereal fields and their boundaries. Baltic Journal Coleopterology, 7(1), 37–50.
  • 50. Siemann E. 1998. Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology, 79, 2057–2070.
  • 51. Slowikowski K. 2018. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R package version 0.8.0. https://CRAN.R-project.org/package=ggrepel
  • 52. Sobeleva-Dokuchayeva I.I. 1996. Features of the formation of the ground beetle (Coleoptera, Carabidae) fauna in non-Chernozem agrocenoses adjacent to forests. Entomological Review, 75, 78–95.
  • 53. Suzuki R., Shimodaira H. 2015. pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling. R package version 2.0–0. https://CRAN.R-project.org/package=pvclust
  • 54. Turin H. 2000. De Nederlandse loopkevers: verspreiding en oecologie (Coleoptera:Carabidae). Naturalis, Leiden. 666 p. (in Dutch)
  • 55. Wickham H. 2009. ggplot2: elegant graphics for data analysis. Springer New York.
  • 56. Wilson R.J., Maclean I.M.D. 2011. Recent evidence for the climate change threat to Lepidoptera and other insects. Journal of Insect Conservation, 15, 259–268.
  • 57. Woodcock B.A., Pywell R.F. 2010. Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodiversity Conservation, 19, 81–95.
  • 58. Van Drop D., Opdam P.F.M. 1987. Effects of patch size, isolation and regional abundance on forest bird communities. Landscape Ecology, 1, 59–73.
  • 59. Vickerman G.P. 1978. The arthropod fauna of undersown grass and cereal fields. Scientific Proceedings of the Royal Dublin Society A, 155–165.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3a6deae-cb94-44e7-ae91-530575f1769a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.