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DESIGN OF EQUIVALENT ONE-TIME MODEL
OF MULTIVARIABLE MULTI-STAGE CONTROL
SYSTEM

Abstract
If a control system contains a few digital chaifidgreatment of information with

different periods of quantum, its research is sglgrcomplicated. In the case of
rational commensurable periods of quantum transtifom of a multirate
system it is possible to design an equivalent one-system with enhanceable
dimension. The general going is offered to thegiesif an equivalent one-time
system, allowing to transform the vectorial-matmodel of the initial multirate
system into a vectorial-matrix one-time model & #lystem, characteristic for
vectorial-matrix models of multidimensional contius systems. Due to that, it
becomes possible, in principle, to transfer of radthof analysis of continuous
multidimensional systems onto the class of digitellogue multirate systems.

1. INTRODUCTION

The usage of microprocessors or IBM in the meaguand processing channels along
with continuously working arrangement is typicat foodern automatic control systems. As a
rule, similar control systems carry out measuresamd processing of some signals sharing
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time. Mathematical models of such systems are septed in a multivariate multistep
uninterruptedly discrete automatic control systelmgestigations of similar systems lead to the
need of their model development in a complex rangih transfer functions as main
modelling elements. The problem of linear digitak#gue (uninterruptedly discrete) multistep
systems contains two essential complexity aspedtsinwthe system multiextent variety of
guantum circuits; second aspect characterizes tbhblgm as unsolvable. In the case of
commensurable periods (their multiplicity to someffitient” period), the second aspect
becomes in general equal to the first, significastirengthening it by great multiplicity of
numbers of “efficient” period quantum periods, doavhich the system can be converted into
a monostep multivariate impulse system of extendiw@ension. Also, to obtain CAY models
in the form of transfer functions, methods usingnai graph have found a wide application.
Signal graph provides evident representation aesysariables and their interaction. It is well
known that to determine transfer functions of linparmanent systems the Manson equation
can be applied. In [1], [2] approaches of Mansoruatign application in one-time
uninterruptedly discrete systems are observedelfet are some various times, theffi and
Williams matrix approach should be applied. Thiic gives a description of the matrix
approach to the design of an equivalent model dfivamiate multirate uninterruptedly discrete
system and also to the creation of a signal grayghtione uninterruptedly discrete system for
which the Manson equation can be applied.

2. MATHEMATICAL MODULE OF INVESTIGATED SYSTEM

Consider a multivariate linear system with digaad analogue control circuits adjusted to
certain transfer function. Leti(s)be an object governing vector, ang(s) - object output

vector. Dimensions of the vectors ameand p,respectively. Considek (S),X5 (S).... % (S)
to be variables, quantified i ,T,,...,T, times (periods) accordingly (among which there can
be equal ones) and consider

to be the appropriate vector.

Equation of uninterrupted object and system anaagtcuits from the object to the key
guantification can be identified as follows:

y(s) =Wo (s)u(s),

Xs)= E(s)y(s)+ B(s(s), .
whereW; (s), E(s), B(s) are transfer function matrixes of the correspohd@nensions.
Thus

X(s)=U (s)u(s), )



where:U (s) = E(s\W, (s) + B(S).
Suppose the quantum perio@isT,.....T, equal some rate, i.e. are shown in the form

T =mT,To=n,T,....T, =n,T, 3
where:m n,,...,n, are identity numbers.

Consider

* * *
X, (), Xa1, (S),--. 1 XrT, (S)

to be Laplace discrete transformation quantified periods T,,T,,...,T, with variables
X1 (1), Xo(t),... % (1) respectively.

Each quantified signalx (kT ), k; =01,..., iOLr is converted by a certain digital
circuit and summarized with two similar signalssuking in control effect formation. Besides
digital circuits, in the control effect formatiomaogue circuits can also be applied (from
object outputs). Taking that into account, we ademtify the equation for k-th component of
control vector as follows:

r p
U (8)= =) diq (S)XT, (5)= ) i (S)¥i (8)+ Ugs (S).

i=1 i
where: dy (s), fij(s) are transfer functions of parallel digital and lagae circuits, and

u.; (s) is effect setting formed by digital circuit. In stocases of summarizing and digital-
analogue signal conversion we can state that

dyi (5) = a(s Wi, (S), 4)

Ups (8) = (SN (8), (5)

1- -Ts
where: a(s) =

, and W[:iTi (s), ufe(s) are periodic functions (with period27j /T,

and 277/ T , respectively) characterizing digital and digaallogue conversion.

Let us take into consideration mati) (s) with eIementsWEiTi (s), and also vectors

% (S), v (s) with eIementsx’fTi (s) and ufBT (s). Symbol * beneath will be used hereafter to

define periodicity properties of matrk (s) and vectorx (s) at particular periods. At the
same time, all these elements in equation (3) regeation x(s+275/T)= x(s), and for a

given matrix\W, (S) and vectorX. (S) the following equations are possible

(ch )t =ctb. (or (b.c)rbcy).



Considering (4), (5), and writing equations for toheffects in vector-matrix form

u(s) = —als W ()% ()= F (s)y(s)+ a(s\V' (s),

where: F(s) - matrix mx p with elementsfy;, is obtained due to equation (1) and (2)

U(s)=~G(s\W (s)x (s) +G(SIV (s), (6)
X(s) = =C(SW (s)x (S)+C(SIV' (), ()
Y(S)=~L(SM (s)x (S)+ L(SIV' (s), (8)

where:

G(s) = as)(1 +F(sWy(s) %,
C(s)=U(s)G(s),
L(s) =Wo (s)G(s).

3. EQUAL MODEL OF THE SYSTEM

The multirate system model can be converted irioeatime system model with quantum
period 7 which is the biggest common devisor of quantumetifp,T,,... T, . Let us rely on

such equations [3]
* 1 n * 2'] * * * ok
s)== s+—(k-1)), X = X .
Yot (S) nk;yT( —(k=1), (T )T = X Yot

Further on, symbdI’ will be avoided in defining a certain impulse cersion.
Considering this equation (7) we see that

X () = - C(S)W(S)%(S)+C (S)V (S).
Changing s intos+% (v -1), whereN, v - some natural numbers, we obtain
X Y(8)=-C"Y (S (s) (8)+C ¥ (sIV ¥ (5) 9
where for each functionp(s) we apply
27
Y(s)=g(s+==(v-1)).

¢” (s)=¢( NT( )

Suppose that in equati¢@) v =1, ... ,N , thus we obtain the equation

X (s)=-C (S (8)% (s)+C" (SIV (s) , (10)



where:

%(s) = (X' (s),x%' (s),...xN " (s)) , (11)
% (5)= (61 (8), %2 (8), e N (5)) (12)
U(s)= (v (s)v2' (5),. ¥ () (13)
C(s)=diag(C}(s),C2(s),...cN (s)), (14)
W(s) = diag(W! (s) W2 (s),...WN (s)) . (15)

Consider vector componemnts(s)
X (s)-—Zx. (s+28 (v~ 1)+ 2 (k-1) . (16)
L e}
Let N be the least common multiphg,n,,...,1n , such as
N = ouing, N =wony, ... ,N=un;,
whereuy, 0, ... U, - natural numbers. Thus, equation (16) can banddfas
X7 (s)= .ZX' <s+N [v+u(k-1)-1]) . (17)
k=1

Let us define that for each> N we will have, considering= fN+ ¢,
X (s+221)=x (s+280) 18)
NT

according to periodic functions;(s) with s in times27j /T. Due to equation (18), the right side

of equation (17) contains onkfs) meaning that there is a linear vector conversi*o(s) into
% (S), % (s), i.e. we obtain

%(8)=MX(s) , (19)
wherell —rN x rN number matrix. Substituting equation (19) into &ipn (10), we define
X (8)=(Ipy +C (SW (s)[1)7IC" (s)V' (s) - (20)
Defining the equation thus
§(s) =~ L(SML ($)% (5)+ L(SV (5)

where:

§(s) = (y* (5),y? (8),..yN (8)), L(s)=diag(L (s),L2(s),..L.N (s)), (21)



and using equation (19), (20), we obtain
§(s) = L(S){ Wk (S)M( 1y +C (S ()[1)C™ (8) + I IV (S) - (22)
By applying identity
I-A(I+BA)'B = (I+AB)* (23)
we define also
§(s) = L(S)(Imn +Vi (S)[TC” (s) ™V (s)
and
Y (8)=L () +Wk (S)[1C () ™V (s). (24)

Let us define matriXI as block one in the form dfl = {II,5}, v /1,..., N, wherell,;—r
X r - matrix and, giving the definition

W =W C (25)

define the elements of block representation of riiagrix
W (8) ={ Wy (s)}.u,l OL,...N (26)
W (s) =W (s)[My C ' (s),0,1 OL,...N . 27)

In this representation

Uiay— 2n,
W (s) =Wk (s+ NT(U 1)),001,...N,

* | _A* _ 2_7]
C(s)=C (s+(1 1)) 1 TL.N.

Block elementsIl,, , v,I71,...,Nhave the form of
My = diag( 75 775 ... 77 ) - (28)

Carrying out simple actions in such a represemafrom equation (27) we obtain for the
matrix elementsw

W (5)= 3 Wiy (s (0 -1) 2 05 (s+(1 -1) 2
u .; o NT 7T NT

The created matrixes (26) of open equivalent ome-8ystem allow to find out outputs of
the closed initial system, quantified in poik® k=0,1,...defining for this purpose the matrix
H'(8) = (It W (s))"
as block type
H ={H ,}, vl 01, .., N



From representation (24) we find out

N
Y (8)=D L (s)Hy (s} (s) (29)

=1

where: y* (s)= y*l(s),L* (s)= L*l(s).

4. STRUCTURAL INVARIANT OF QUANTUM CIRCUITS

In the common case of multivariate multistep cdrggstems description, a complex chain
of mutual quantum process effect in close systagitadicircuits with different quantum steps
takes place. Typical description feature of thigiohs matrixI1, i.e. transformation (19).

The dimension and complexity of this matrix is ciietdied by mutual number
characteristics of digital circuits on numbenmg,...,n, determining mutual relation between

guantum steps antll - the least common multiple of given numbers. Nemzlements of this
matrix determine only number®/ n;,i =1,...,r, making sense for relative quantum density

(relations of «rear» number counting out to «freguenumbers). As in system structure
particularly digital circuits and quantum keys agament does not adversely affect maffix

S0 it is a quantum circuit structure invariant. damplete the formation of the equivalent one-
step system model, let us now point out the waylahatrix element calculation. Let us find
them in the form of matrix (18). We examine the aipn

- r_1 4 +(k-1)
* *V+(k-1)y;
; 7'1"[,p X = n—lé X ) (30)
which takes place according to (19) and (17) withication

*| * 27, .

i (8)=x (s+(I-1)—=),i=1...,r,

X (8)=x (s+(1=1)T)

which was mentioned above. Note that, consideragaton (30), periodicity ratio should be
concerned

xNtP=x P =12,

as the abovementioned function propexﬁ(s), i=1...r.
For this purpose let us consider the right sidecpfation (30) and numbers multitude
p(k)=v+(k-1);, k=1...,n; (31)
with fixed index valuev, i . It is evident that numbers of this multitude ppseperty

p(K")> pUK), K>k



Let ppax be the greatest from numbesgk,v,i)=v+(k-1)v; with free index
le,_ni; vOLN; iOLr.

Pmax=mMax N +(n —1)v; )= N+N-v= N+I/,
iaLr

where: v - the least numbey;, i OLr . According to the ratioN = nv;, if even one of all
numbersn;, i O1r is less thanN (even one of all numbers;, i OLr is bigger than 1), it

means I/< N. Owing to this, all numbers from (31), bigger thaN, may be
N+, 0<y < N-1. Now at one's own choosirld' , k', k so thatk” >k’ >k we obtain

p(k)=v+(k-1)v; = y<N,
p(k')=v+(k'=1; =N +y',
p(k")=v+(K"=1; =N+ y".
Subtracting we find out
V=Y =K =KW, y=y =(k=K)WV; +N=(n +k=-Kk";.
Thus
y<y'<y.

On account of equation (30), the following rule d@nderived to calculate the elements
of the quantum densityz;, | =1,...,N matrix [ by fixed indexes, i

1/n,1=1(k)= p(k), p(k)<N
my =41/ n, 1 =1(k)= p(k)=N, p(k)>N
0 1zI(k),

where: valuep(k), k=1...,n; is calculated in (31).

Thus there is an algorithm for which we can creaiable

Table 1. Table of algorithm

) .0 1 0...0 1 0...




The upper row of the table is for identity numbgmn 1 toN, some of them are marked
with a star. The lower one is for valuesdifl) , equal to 1 below marked numbers and 0 on the

contrary. The rule of marking the upper row is tfledlowing. Values are calculated as
pK)y=v+(k-1y; . k=1....n. Ifp(k)<N, we mark the numberl = p(k), if
p(k) =N+ y(k), then numben. =y, . In this way the lower row determines the value of
&(0),1=1,...,N, and 77, =ni5(|),| =1,...N.

i

Thus, in this way we define the whole matrix réW, i.e. the diagonal elements with fixed
indexesv,i of all big matrixes, equal to eithdfn, or 0. Suppose& =1, then using algorithm

r times in values of =1,...,r we find the first row ofl1 matrix

M11, Maps oo Mynas Moy
This row, by means of series circle permutatiortedrines the whole matriX1. The
lower row looks as follows
Miny Magseen Man-2, Mlana

etc. E.g., byN =3 the whole matrix'1 is given by

Myg i Myp i Myg

Myp i Mygi Mgy

This conclusion is easy to come to if we compate and 7, |,

kOLn; . According to equation (31)p(k,v +1) = p(k,v)+1. Thus, if I(k) < N, then
I'(k)=I(k)+1, and if I(k)= N, thenl'(k)=1. For block matrixes which are defined by
le,_ni, such number will be representedi@g,qy =M 41, | <N; My =My, =N,

corresponding to

which is the rule definition .
It is also essential to emphasize the opportuwitiptm prescribed matrix blockB . Let
us consider block1,; . Diagonal elementsz, i =1,...,r should be defined with values | .

Let us seti O1,...,r , then:
1. If there isk Dl_nI satisfying any equation
v+(k-1y; =1, v+(k-1); -N=lI, (32)
then
iy =1n; and

2. If there is nok Dl_nI then



Example. Suppose=2, n; =1,n, =3.

Thus, N =3,v; =3,v, =1. For blockll,; there is an equation

i=1 1+(k-1)3=1, 1+(k-1)3-3=1, k013,
i=2 1+(k-1)1=1, 1+(k-1)1-3=1, kO13.

That is why 7734 =1, 7754 =1/3.
For block M 45:

i=1 1+(k-1)3=2, 1+(k-1)3-3=2, k013,
i=2 1+(k-1)1=2, 1+(k-11-3=2, k013,

ThUS, ﬂ%z =0, ﬂi22 =]/3
Finally, for blockI1,3:

i=1 1+(k-1)3=3, 1+(k-1)3-3=3, k013,
i=2 1+(k-1)1=3, 1+(k-1)1-3=3, k013,

ThUS, ﬂ%3=0, ﬂi22 =]/3

The whole matrix is given by

0 0i0 0
0 3i0 3.0 13

Differences in quantum density are seen in mdftixn the form of inhomogeneous filling
of its blocks. When quantum density is equal in athe circuits, k.

m=n,=---=n,=n, N=n and vy =v, =---=v, =1, then matrixIT is fully filled and
all block elementdi,,, v, =1,...,n are equal to

1
Mny==1,,
U n r

where: |, - - single matrixr xr .
It is clear that the first equation (32), by=1,v; =1 by any| 01,n, has solutionk =1 ,
which means thatzy =1/n,iOLr .

10



5. FORMATION OF EQUIVALENT MODELSOF MULTIRATE
SYSTEMSIN THE FORM OF SIGNAL GRAPH

To obtain aCAY model in the form of transfer functions, methaéng signal graph have
found a wide application. Signal graph providesiobs introduction of system variables and
their interaction. It is well known that to defineansfer functions of linear uninterrupted
systems the Manson formula can be used. In [1]JafProaches using Manson formula in one
time uninterrupted discrete systems are considénetthis article the formation of signal graph
multirate uninterrupted discrete system for whicargon formula is applicable is observed.

While constructing signal graph of multirate unmtgted discrete system, let us consider
the symbol system of Sodper and Becky [2]. Whitetkim the graph is used to define
uninterrupted variable system. Black knot is useddéfine discrete variable and quantum
operations, variable significance represented by l@ack knot being discrete form of sum
transformation of all variables, being in the knatcording to a certain rate. Because in
uninterrupted discrete, as a rule, it is imposstbleutline inlet variable in presentation for,
thus it is worthwhile to coordinate inlet influendeis carried out by introduction of branches
with transfer function equal to inlet variablesthat entire transfer function belonging to the
single output, transfer function and output beceapeal.

Linear uninterrupted discrete system with some tifiars with discrete timeély, ... , &
can be described by the system of linear algele@uations in certain fields
N .
As)(s)= D Bx"(s)+R, (33)
i=1

where:x(s)—n is vector of variable systems represented accgtditaplace;

A(s) - mn uninterrupted transfer function matrix;" (s) - discrete transformation in timdg
i=1, ..., Nvectorx(s) R — n— standardized input vector which, according tetesy linearity,
can be considered as vectRf=[1 00 ... '’ where’ — here and further means transportation;
B, - nx — matrixes characterizing quantifier presence wahous discrete times in system,
they consist of 0 and 1 and represent quantifinatio

To simplify (33) it is worthwhile to write first oéll equations for uninterrupted, and then
for quantum variables by turns for each discretefi;, i = 1, ... ,N[1].

A(s)is of block type
W(s) ®y(s) - ®pn(s)

0 Iy 0
As)=| . o . , (34)
0 0 I'n
where: N — quantity of different measure pointy(s) - I — transfer function matrixt —
uninterrupted variables numbe®;(s) - Ixm — transfer function matrixn — quantifier number
with discrete timdl;, i = 1, ... , N |; — identity matrixesn xm.

11



Let us define

yIT| (S) = Bi XTi (S), i :1,...,N. (35)

Vector yF (s) consists of them vector componenthi , complying with quantifier
outputs with discrete timg,.

From (33), taking into account (35) (considering firesence o&’(s)), we obtain

N
x(s)=AL()> y] (s)+ AL (sR. (36)
=1

EIementsaij'1 of matrix 4™ are transfer functions froinknot toi knot of initial system

with all open quantifiers. Actually, considering amntifiers and vectorsyﬁ (s) to be
independent input effects which can be definedeas, Zrom (4) we obtain

N
Xi(s)=) aj'rj, (37)
=1

where:r; — vector elements of normalized ingrut
On the basis of (36), uninterrupted discrete systammplex graph’ can be created, which
gives us system transfer functions by applying Menson formula. A complex graph is

uninterrupted discrete system initial graph andréi® graph combination, made lyﬁ (s).
In (36), variablesyiTi (s) are input signals of keys which we will defineimput variables.

Having formedN discrete graph foryﬁ (s), we may delete quantifiers from the initial graph

and connect input knots of keys with equivalenttkraf discrete graphs by means of branches
with identity intensification coefficients. In thiway, we obtain a complex system graph to
which the Manson formula is applicable.
Consider uninterrupted discrete system with N gaarg, so that discreteness es are as
follows
L:ﬂ i=1...,N-1. (38)
Ti+1 Qi
The system of linear algebraic equations with theetrate for this system is shown in
(36).
Multiplying (36) to the correspondeft, we obtain a ratio system

N
Yi(5) =B ALY y] +BAT(SR i=1...N. (39)
=1

12



Let T — discrete time — be equal to the least commortiphaltime of allN timesT,. We
can carry out discrete conversion of veot(®)to least common multiple — tinfe

N
xT(5)=(AL(8)D vy ()T +(AT(sR)T . (40)
i=1

Assuming the meaning o_l_}—— =n;, and using discrete transformer property
[

n-1 ) )
[ g(s)z’ ()" =Z( g(se™ )" (s,
we can write

XT(8)= 3 (ALY (y, () +...+

i,=0

ny-1 ) )
+ 2 (A9 ™) (Y (9)€M™) + . (41)

in=0
+(AY(9)R)'
Let us identify
Y](il) =V1 (S)EilTlS...YN(iN) = YN (S)aiNTNS; I] = O,...,(nj -1); j=1...,N.

We obtain equation of vectohg(Ti Yo ,Yﬂ(i y» then multiply in (39) each equation to

1" (i =0,...(n; 1), j=1...,N).

Yiiy) = (BA™ (ST yj () + (B AT (5)REMS) iy =0,...,(my 1)
= . 42)
Yy = (BNAT (SN i (5)) +(By A ()RS iy =0,... (ny - 1)
j=1

Let us carry out discrete transformation (42) ®Ildgast common multiple — tinfée

13



kTS \T koTos \T
Z(qu)e ey 1(k)+Z(W1('1)e 2hsyT 2(|<2)+ -+
,=0
ny -1 o
£ (W, e WTvS)T Y(ky) ) 1= 0u(n=1)
Ky =0
(43)
YT _nl_lw —kTis\T Y + W koTos +
N(iN)_kZO( N(Gin)® ) Vi) Z( N(in )€ Y. 2(k2)
L kT, T
2 (Wi )@ N TY ) #00Ny iy =0 (ny —1)
k=0
where:
iiTis . _
j(l )—B A (Sb —1,...,N, (44)

®;=B;A ! (s)ReTTS =1 N.

Calculating together (43) and (41) and introducthgve may obtain input-output relation
for all variable systems.
This system contains

N
n+ijnJ
j=1

equation, where: n — vector dimensigs) m — number of keys with timeg; n; — number
equal to the relation of the least common multiptee to timeT;.

Ratio (41), after introducingy;, can be accepted as discrete system descriptipatsi of
which along with outputs of initial uninterruptedlyiscrete system are variables

YJ.T(i_) j=1...,N; ij =0,..,(n; —1). As their representation is
]
' T j_l iTi
J _ | S _ —-iiT:S, T
Ze e Lyje™ ™17 Z}) YJ(I ) (45)
;=

it can be considered to be a result of input sgpalrallelization of keys with tim in the
initial system on pbranches, each of which has transfer coefficient

-iiTis .
e " i;=0,..,(n; -1).

Then, the initial system in (9) can be specifiedthy discrete graph in which keys are
open and their outputs are input signals into gfstesn along with initial input signals. At the
same time, each of these new inputs from quargifief j=1,...,N) can be represented as a set

14



T .
itip) !
connections, we can formulate the input-outpubraticording to the final discrete graph.

of inputs Y =1...,N; i; =0,...,(nj -1) and, by connecting certain knots by identity

T

Discrete graphs fo]'(j(i_ ) are built on the basis of (43). There should be
]

discrete graphs.

The construction of algorithm for uninterruptedigatete system signal graph on the basis
of equations (41) — (43) will be as follows:

1. On the basis of structure scheme an unintemllptaiscrete system initial graph is
formed. All quantifiers in itT; j=1,...,N are considered to be regulated by diminution ppen
at the same time output signals of keys are coreid® be input ones into the system where

N
2 m; is the quantity of black knots and skey number with tim@;.
j=l
2.Form n,  j=1,...,,N of the discrete graph, corresponding to tifpen the following
procedures:
al)j=1,
a) in the initial graph we compose only knots copegling to quantifiers input signals

with time T; and connected with them input knots (initial amahi quantifiers). As a result we
obtain the intermediate graph;

8.2) ij = 0,

b) in the intermediate graph we replace all trarfgfiactions of linksw with WeijTjS;

c) we make input signals parallel from keyg k = 1,...,N k Z j to n branches,
substituting each transfer function of the branch W for

we kS | =0, (n -1),k=1...N, k# j.
d) we substitute knots for black, and transfer fioms for their discrete transformation in

time T. We enter input knots in the Table throuﬁqj'éik X then state conformity between knots

X' and YkT(ik) by means of identity connections, where it is 8sagy. We obtain a discrete
graph corresponding to tinig.

e) points b} d) are now executed times, supposing = ij + 1; this results in discrete
graph i corresponding to timg, i; = 0,...,(n — 1);

f) ] — we increase by one and repeat paijts e) for discrete graph construction for all N
quantifiers, i.ej = 1,...,N

15



3. Now we turn back to the initial graph and maKeirgut signals parallel from keys
yJTj , J=1...,N, into n corresponding branches 1,...,N

We transfer each function from ; n branches W and substitute for
We_kJTjS kj =0,...,(nj -1), j =1...N, respectively. We now enter the input knots in the

Table through variableij(ij), ij =0,..,(n; -1).

We connect to the marked inputs all of discretelgsa got in item 2, by single connections.
We set, where necessary, other single connectipriger identical knots. We get the
component graph.

4. We substitute all the knots with black, and $fan functions on their discrete
transformations on time the least common multiplen-time ofT. We get the final discrete
graph of the system.

5. By applying the Mason rule we determined theemsity of input-output correlation for
the system variables af for the obtained graph of the system.

Now we can formulate the algorithm of receipt wnal graph of multivariate of the
continuously-discrete system for the case of migltifmes.

1. On the basis of the flow diagram of the systemindtial graph containing white and
black knots is formed. Black knots have indexediof | = 1,.,N proper to the value of
time of discreteness. Times are considered webtwumgd on a decrease. In the initial
graph keys are considered broken; here the ouignals of keys are considered entrance
knots in the system and black knots correspontdamt

2. On the initial graph of the system, through theligppion of the Mason algorithm, the

discrete graph of 1st level is formed in confornendth the following:

All the knots, being by an entrance for the keyththe smallest time ofFN, get out in
the initial graph. They are considered output kndt$ the entrance knots, related to the
indicated output, get out then. Entrance knotshmathe entrance signals of the initial system,
and also outputs of keys with large times. In thesbh algorithm, connections between these
knots are determined and the intermediate couhsolevel is formed.

Further, all white knots of the intermediate grapé replaced with black knots, with the index

of variables ofTN, which corresponds to discrete transformation arfables in time of TN,

and the transmission functions of connections epéaced by their discrete transformations in
time of TN. Black knots that are proper discrete variableddoge times remain unchanged.

The discrete count of the system of 1st level isnfd in the same manner. We set, where

necessary, single connections for proper idenkicats.

3. The component graph of 1st level is formeduiths$ out to be a combination of the initial

graph of the system and discrete graph of 1st.|&uals the proper black knots of the graph,

being weakened signals of keys Ti, are united hglsiconnectiond, = 1,.,N. A component
graph of 1st level is the basis for the constructibdiscrete graph of 2nd level.

4. Algorithms for the discrete graph of 2nd levet,cetera tilIN-th number of levels 2, are

formed as per item a, with the change that in ptefdeeys with time of TN, keys are utilized

accordingly with time ofTN-1 et cetera, till time ofT;. As a result of the expounded
procedureN number of discrete counts of the system will renfed.

5. The final count of the system is further formedhjch turns out to be a combination of the

initial and N of discrete counts of the system.

By single connections, the accordance of knotsisdfrdte counts is set with the entrance
knots of the initial count.
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6. In the algorithm of Mason, the input-output edations are determined for the system
variables of multirate continuously-discrete systeith multiple times.
The offered method provides a formalised procedofeconstruction of input-output

correlations of multirate continuously-discreteteyss.

6. ABOUT ANALYSISOF MULTIRATE SYSTEMS PROCESSES

Observed multirate systems applications in the fofrequivalent one-time models give
common reasons for process analysis in given one-8ystems. While observing resultant
correlation, it is not difficult to see that in athses impulse images of equivalent models
outputs have the form of rational functions of giweariables. Turning to Z—images we will
have an equation defining the output images as Bhey correspond to:

Y(kT):2—2§ f(2)2*dz . (46)

The closed contour of integration in equation (d®ers all poled(z) . Thus, the problem

of process analysis in given multirate systems besoreduced to the problem of rational
functions of pole distribution analysféz) concerning a single circle.
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