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Abstract 

If a control system contains a few digital chains of treatment of information with 
different periods of quantum, its research is strongly complicated. In the case of 
rational commensurable periods of quantum transformation of a multirate 
system it is possible to design an equivalent one-time system with enhanceable 
dimension. The general going is offered to the design of an equivalent one-time 
system, allowing to transform the vectorial-matrix model of the initial multirate 
system into a vectorial-matrix one-time model of the system, characteristic for 
vectorial-matrix models of multidimensional continuous systems. Due to that, it 
becomes possible, in principle, to transfer of methods of analysis of continuous 
multidimensional systems onto the class of digital-analogue multirate systems. 

 
 
1. INTRODUCTION 
 

The usage of microprocessors or IBM in the measuring and processing channels along 
with continuously working arrangement is typical for modern automatic control systems. As a 
rule, similar control systems carry out measurements and processing of some signals sharing 
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time. Mathematical models of such systems are represented in a multivariate multistep 
uninterruptedly discrete automatic control systems. Investigations of similar systems lead to the 
need of their model development in a complex range, with transfer functions as main 
modelling elements. The problem of linear digital-analogue (uninterruptedly discrete) multistep 
systems contains two essential complexity aspects within the system multiextent variety of 
quantum circuits; second aspect characterizes the problem as unsolvable. In the case of 
commensurable periods (their multiplicity to some “efficient” period), the second aspect 
becomes in general equal to the first, significantly strengthening it by great multiplicity of 
numbers of “efficient” period quantum periods, due to which the system can be converted into 
a monostep multivariate impulse system of extensive dimension. Also, to obtain CAY models 
in the form of transfer functions, methods using signal graph have found a wide application. 
Signal graph provides evident representation of system variables and their interaction. It is well 
known that to determine transfer functions of linear permanent systems the Manson equation 
can be applied. In [1], [2] approaches of Manson equation application in one-time 
uninterruptedly discrete systems are observed. If there are some various times, the �offi and 
Williams matrix approach should be applied. This article gives a description of the matrix 
approach to the design of an equivalent model of multivariate multirate uninterruptedly discrete 
system and also to the creation of a signal graph one-time uninterruptedly discrete system for 
which the Manson equation can be applied. 

 
 

2. MATHEMATICAL MODULE OF INVESTIGATED SYSTEM 
 

Consider a multivariate linear system with digital and analogue control circuits adjusted to 
certain transfer function. Let )s(u be an object governing vector, and )s(y  - object output 

vector. Dimensions of the vectors are m and p, respectively. Consider )s(x,),s(x),s(x rK21  

to be variables, quantified in rT,,T,T K21  times (periods) accordingly (among which there can 

be equal ones) and consider   
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to be the appropriate vector. 

Equation of uninterrupted object and system analogue circuits from the object to the key 
quantification can be identified as follows: 

 
),s(u)s(B)s(y)s(E)s(x

),s(u)s(W)s(y

+=
= 0  (1) 

where )s(B),s(E),s(W0  are transfer function matrixes of the correspondent dimensions. 

Thus 

 ),s(u)s(U)s(x =  (2) 
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where: )s(B)s(W)s(E)s(U += 0 . 

Suppose the quantum periods rT,,T,T K21  equal some rate, i.e. are shown in the form 

 ,TnT,,TnT,TnT rr === K2211  (3) 

where: rn,,n,n K21  are identity numbers. 

Consider 

)s(x,),s(x),s(x *
rT

*
T

*
T r

K
21 21  

to be Laplace discrete transformation quantified in periods rT,,T,T K21  with variables 

)t(x,),t(x),t(x rK21 respectively. 

Each quantified signal 
____

iiii r,i,,,k),Tk(x 110 ∈= K  is converted by a certain digital 

circuit and summarized with two similar signals, resulting in control effect formation. Besides 
digital circuits, in the control effect formation analogue circuits can also be applied (from 
object outputs). Taking that into account, we can identify the equation for k-th component of 
control vector as follows: 

∑ ∑
=

+−−=
r

i

p

i

��iki
*
iTkik )s(u)s(y)s(f)s(x)s(d)s(u

i

1

, 

where: )s(f),s(d kiki  are transfer functions of parallel digital and analogue circuits, and 

)s(u��  is effect setting formed by digital circuit. In most cases of summarizing and digital-

analogue signal conversion we can state that  

 ),s(W)s(a)s(d *
kiTki i

=    (4) 

 ),s(u)s(a)s(u *��T�� =  (5) 

where: ,
s

e
)s(a

Ts−−= 1
 and )s(u),s(W *��*

kiTi
 are periodic functions (with periods  iT/jπ2  

and  T/jπ2 , respectively) characterizing digital and digital analogue conversion. 

Let us take into consideration matrix )s(W*  with elements )s(W*
kiTi

, and also vectors 

)s(v),s(x *
*  with elements )s(x*

iTi
 and )s(u*��T . Symbol * beneath will be used hereafter to 

define periodicity properties of matrix )s(W*  and vector )s(x*  at particular periods. At the 

same time, all these elements in equation (3) meet equation )s(x)T/js(x =+ π2 , and for a 

given matrix )(* sW  and vector )(* sx  the following equations are possible 

*
*
T

*
T* bc)cb( =   (or *

T*
*
T* cb)cb( ). 
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Considering (4), (5), and writing equations for control effects in vector-matrix form  

),s(v)s(a)s(y)s(F)s(x)s(W)s(a)s(u *
** +−−=  

where: )s(F  - matrix pm×  with elements kif , is obtained due to equation (1) and (2) 

 ),s(v)s(G)s(x)s(W)s(G)s(u *
** +−=  (6) 

 ),s(v)s(C)s(x)s(W)s(C)s(x *
** +−=  (7) 

 ),s(v)s(L)s(x)s(W)s(L)s(y *
** +−=  (8) 

where:  

,))s(W)s(FI)(s(a)s(G 1
0

−+=  

),s(G)s(U)s(C =  

)s(G)s(W)s(L 0= . 

 
 
3. EQUAL MODEL OF THE SYSTEM 

 
The multirate system model can be converted into a one-time system model with quantum 

period 
�
 which is the biggest common devisor of quantum time rT,T,T K21 . Let us rely on 

such equations [3] 

∑
=

−+=
n

k

*
T

*
nT ))k(

nT

•j
s(y

n
)s(y

1

1
21

,       *
T

*
nT )xy(  = *

nT
*
T yx  . 

Further on, symbol 
�
 will be avoided in defining a certain impulse conversion. 

Considering this equation (7) we see that 

x*(s) = - C*(s)W*(s)x*(s)+C*(s)v*(s). 

Changing s into )(
NT

j
s 1

2
−+ υπ

, where N, υ - some natural numbers, we obtain  

 )s(v)s(C)s(x)s(W)s(C)s(x **
**

** υυυυυυ +−=  , (9) 

where for each function  )s(ϕ  we apply 

))(
NT

j
s()s( 1

2 −+= υπϕϕυ . 

Suppose that in equation (9) υ = 1, ... , N , thus we obtain the equation 

 )s(v̂)s(Ĉ)s(x̂)s(Ŵ)s(Ĉ)s(x̂ **
**

** +−=  , (10) 
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where:  

 ))'s('x),...,s('x),s('x()s(x̂ N21=  , (11) 

 ))'s('x),...,s('x),s('x()s(x̂ N
****

21=  , (12) 

 ))'s('v),...,s('v),s('v()s(v̂ N21= , (13) 

 ))s(C),...,s(C),s(C(diag)s(Ĉ N21= , (14) 

 ))s(W),...,s(W),s(W(diag)s(Ŵ N21= . (15) 

Consider vector components xυ
*(s) 

 ∑
=

∗∗ −+−+=
i

i

n

k i
i

i
iT ))k(

Tn

j
)(

NT

j
s(x

n
)s(x

1

1
2

1
21 πυπυ  . (16) 

Let N be the least common multiple n1,n2,...,nr , such as 

N = υ1n1, N = υ2n2, ... ,N = υrnr , 

where υ1,υ2, ... ,υr - natural numbers. Thus, equation (16) can be defined as 

 ∑
=

∗∗ −−++=
i

i

n

k
ii

i
iT ]))k([

NT

j
s(x

n
)s(x

1

11
21 υυπυ  . (17) 

Let us define that for each  l > N we will have, considering l = fN+υ, 

 )
NT

j
s(x)l

NT

j
s(x *

i
*
i υππ 22 +=+  (18) 

according to periodic functions x*
i(s) with s in times jπ2 /T. Due to equation (18), the right side 

of equation (17) contains only x(s), meaning that there is a linear vector conversion )s(x̂*  into 

)s(x̂* , )s(x̂* , i.e. we obtain 

 (s)x̂(s)x̂ *
* ∏=  , (19) 

where �  – rN �  rN number matrix. Substituting equation (19) into equation (10), we define 

 )s(v̂)s(Ĉ))s(Ŵ)s(ĈI((s)x̂ **
*

*
rN

* 1−∏+=  . (20) 

Defining the equation thus 

)s(v̂)s(L̂)s(x̂)s(Ŵ)s(L̂)s(ŷ *
** +−=  

where: 

 ))s(y),...,s(y),s(y()s(ŷ N ′
′′′

= 21 ,  ))s(L),...,s(L),s(L(diag)s(L̂ N21= , (21) 
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and using equation (19), (20), we obtain 

 )s(v̂}I)s(Ĉ))s(Ŵ)s(ĈI()s(Ŵ){s(L̂)s(ŷ *
mN

*
*

*
rN* +∏+∏−= −1  . (22) 

By applying identity 

 I-A(I+BA)-1B = (I+AB)-1 (23) 

we define also 

)s(v̂))s(Ĉ)s(ŴI)(s(L̂)s(ŷ **
*mN

1−∏+=  

and 

 )s(v̂))s(Ĉ)s(ŴI)(s(L̂)s(ŷ **
*mN

** 1−∏+= . (24) 

Let us define matrix �  as block one in the form of  �  = {� υp}, υ ∈ 1,..., N , where � υl – r 
x r - matrix and, giving the definition 

 *
*

* ĈŴW ∏=  (25) 

define the elements of block representation of this matrix 

 N,...,l,)},s(W{)s(W *
p

* 1∈= υυ  , (26) 

 N,...,l,),s(C)s(W)s(W l*
l*

*
l 1∈∏= υυ

υ
υ . (27) 

In this representation  

,N,...,)),(
NT

j
s(W)s(W ** 11

2 ∈−+= υυπυ  

N,...,l),
NT

j
)l(s(C)s(C *l* 1
2

1 ∈−+= π
. 

Block elements  � υp , υ,l∈1,...,N have the form of 

 ),...,,(diag r
llll υυυυ πππ 21=∏ . (28) 

Carrying out simple actions in such a representation, from equation (27) we obtain for the 
matrix elements  W*

υl 

∑
=

∗
∗

∗ −+−+=
r

i
ii

i
ll )

NT

j
)l(s(C)

NT

j
)(s(W)s(W

1

2
1

2
1

ππυπ µσυ
σµ

υ  

The created matrixes (26) of open equivalent one-time system allow to find out outputs of 
the closed initial system, quantified in points kT, k=0,1,... defining for this purpose the matrix 

H*(s) = (ImN+W*(s))-1 

as block type 

H* = {H *
υp}, υ,l ∈ 1, ... , N 
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From representation (24) we find out 

 ∑
=

=
N

l

l**
l

** )s(u)s(H)s(L)s(y
1

1  , (29) 

where: )s(L)s(L),s(y)s(y **** 11 == . 

 
 

4. STRUCTURAL INVARIANT OF QUANTUM CIRCUITS 
 

In the common case of multivariate multistep control systems description, a complex chain 
of mutual quantum process effect in close system digital circuits with different quantum steps 
takes place. Typical description feature of this chain is matrix Π , i.e. transformation (19). 

The dimension and complexity of this matrix is conditioned by mutual number 
characteristics of digital circuits on numbers r1 n,,n K  determining mutual relation between 

quantum steps and N - the least common multiple of given numbers. Non-zero elements of this 
matrix determine only numbers r,,i,n/ i K11 = , making sense for relative quantum density 

(relations of «rear» number counting out to «frequent» numbers). As in system structure 
particularly digital circuits and quantum keys arrangement does not adversely affect matrix Π , 
so it is a quantum circuit structure invariant. To complete the formation of the equivalent one-
step system model, let us now point out the way of Π matrix element calculation. Let us find 
them in the form of matrix (18). We examine the equation 

 ∑∑
=

−+

=
=

i
i

n

k

)k(*
i

N

1l i

l*
i

i
p x

n
x

1

11 νν
νπ , (30) 

which takes place according to (19) and  (17) with indication 

r,,i),
NT

j
)l(s(x)s(x *

i
l*

i K1
2

1 =−+= π
, 

which was mentioned above. Note that, considering equation (30), periodicity ratio should be 
concerned 

K,,l,xx p*
i

p*N
i 21==+  

as the abovementioned function property r,,i),s(x*
i K1= . 

For this purpose let us consider the right side of equation (30) and numbers multitude 

 ii n,,k,)k()k(p K11 =−+= νν   (31) 

with fixed index value i,ν . It is evident that numbers of this multitude pose property 

kk),k(p)k(p ′>′′′>′′ . 
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Let maxp  be the greatest from numbers i)k()i,,k(p ννν 1−+=  with free index 

r,i;N,;n,k i 111 ∈∈∈ ν . 

γνν +=−+=−+=
∈

NNN))n(N(maxp ii
r,i

max 1
1

, 

where: ν  - the least number r,i,i 1∈ν .  According to the ratio iinN ν= , if even one of all 

numbers r,i,ni 1∈  is less than N   (even one of all numbers r,i,ni 1∈  is bigger than 1), it 

means N<γ . Owing to this, all numbers from (31), bigger than N , may be 

10 −≤≤+ N,N γγ . Now at one's own choosing k,k,k ′′′  so that kkk >′>′′  we obtain 

,N)k()k(p i ≤=−+= γνν 1  

γνν ′+=−′+=′ N)k()k(p i1 , 

γνν ′′+=−′′+=′′ N)k()k(p i1 . 

Subtracting we find out 

iiii )kkn(N)kk(,)kk( ννγγνγγ ′′−+=+′′−=′−′−′′=′−′′ . 

Thus  

γγγ <′′<′ . 

On account of equation (30), the following rule can be derived to calculate the elements 

of the quantum density N,,l,i
l K1=νπ  matrix Π  by fixed indexes i,ν  









≠
>−==

≤==
=

),k(ll

N)k(p,N)k(p)k(ll,n/

N)k(p),k(p)k(ll,n/

i

i
i
l

0

1

1

νπ  

where: value in,,k),k(p K1=   is calculated in (31).  

Thus there is an algorithm for which we can create a Table 

 
Table 1. Table of algorithm 
 

l 1 2  *  *  N 

(l)δ    …0 1 0…0 1 0…  
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The upper row of the table is for identity numbers from 1 to N, some of them are marked 
with a star. The lower one is for values of l)(δ , equal to 1 below marked numbers and 0 on the 

contrary. The rule of marking the upper row is the following. Values are calculated as 

ii n,,k,1)-(kp(k) K1=+= νν . If N)k(p ≤ , we mark the number )k(pl* = , if 

)k(N)k(p γ+= , then number k*l γ= . In this way the lower row determines the value of 

N,1,l(l), K=δ , and N,,l),l(
ni

i
l K1

1 == δπν . 

Thus, in this way we define the whole matrix row Π , i.� . the diagonal elements with fixed 
indexes i,ν  of all big matrixes, equal to either in1  or 0. Suppose 1=ν , then using algorithm 

r  times in values of r,,i K1= we find the first row of Π  matrix 

N11N11211 ,,,, ΠΠΠΠ −K . 

This row, by means of series circle permutation, determines the whole matrix Π .  The 
lower row looks as follows 

1N12N111N1 ,,,, −− ΠΠΠΠ K  

etc. E.g., by 3=N  the whole matrix Π  is given by 

111312

121113

131211

ΠΠΠ
ΠΠΠ
ΠΠΠ

=Π . 

This conclusion is easy to come to if we compare i
lνπ   and  i

l1+νπ , corresponding to 

in,k 1∈ .  According to equation (31), 11 +=+ ),k(p),k(p νν . Thus, if N)k(l < , then 

1+=′ )k(l)k(l , and if  N)k(l = , then 1=′ )k(l . For block matrixes which are defined by  

in,k 1∈ , such number will be represented as ,Nl,;Nl, lll =Π=Π<Π=Π ′++′+ 1111 νννν  

which is the rule definition . 
It is also essential to emphasize the opportunity to form prescribed matrix blocks Π .  Let 

us consider block lνΠ . Diagonal elements r,,i,i
l K1=νπ should be defined with values l,ν .  

Let us set r,,i K1∈ , then:  

1. If there is in,k 1∈ , satisfying any equation 

 ,lN)k(,l)k( ii =−−+=−+ νννν 11  (32) 

then  

i
i
l n1=νπ  and 

2. If there is no in,k 1∈ , then  

0=i
lνπ . 
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Example.  Suppose 312 21 === n,n,r .  

Thus, 133 21 === νν ,,N .  For block 11Π  there is an equation 

.,k,)k(,)k(i

;,k,)k(,)k(i

311311111112

311331113111

∈=−−+=−+=

∈=−−+=−+=
 

That is why 311 2
11

1
11 == ππ , . 

For block 12Π : 

.,k,)k(,)k(i

;,k,)k(,)k(i

312311121112

312331123111

∈=−−+=−+=

∈=−−+=−+=
 

Thus, 310 2
12

1
12 == ππ , . 

Finally, for block :13Π  

.,k,)k(,)k(i

;,k,)k(,)k(i

313311131112

313331133111

∈=−−+=−+=

∈=−−+=−+=
 

Thus, 310 2
12

1
13 == ππ , . 

The whole matrix is given by 

310310310

000000

310310310

000100

310310310

000001

=Π . 

Differences in quantum density are seen in matrix Π  in the form of inhomogeneous filling 
of its blocks. When quantum density is equal in all the circuits, i.� .  

nN,nnnn r ===== L21   and  121 ==== rννν L ,  then matrix Π  is fully filled and 

all block elements n,,1l,,l K=νΠν  are equal to  

rl I
n

1=Πν , 

where: rI  - - single matrix rxr .  

It is clear that the first equation (32), by 11 == i,νν  by any n,l 1∈ , has solution lk = ,  

which means that r,i,ni
l 11 ∈=νπ . 
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5. FORMATION OF EQUIVALENT MODELS OF MULTIRATE  
    SYSTEMS IN THE FORM OF SIGNAL GRAPH 
 

To obtain a 
��

Y model in the form of transfer functions, methods using signal graph have 
found a wide application. Signal graph provides obvious introduction of system variables and 
their interaction. It is well known that to define transfer functions of linear uninterrupted 
systems the Manson formula can be used. In [1], [2] approaches using Manson formula in one 
time uninterrupted discrete systems are considered. In this article the formation of signal graph 
multirate uninterrupted discrete system for which Manson formula is applicable is observed. 

While constructing signal graph of multirate uninterrupted discrete system, let us consider 
the symbol system of Sodper and Becky [2]. White knot in the graph is used to define 
uninterrupted variable system. Black knot is used to define discrete variable and quantum 
operations, variable significance represented by any black knot being discrete form of sum 
transformation of all variables, being in the knot, according to a certain rate. Because in 
uninterrupted discrete, as a rule, it is impossible to outline inlet variable in presentation for, 
thus it is worthwhile to coordinate inlet influence. It is carried out by introduction of branches 
with transfer function equal to inlet variables so that entire transfer function belonging to the 
single output, transfer function and output become equal. 

Linear uninterrupted discrete system with some quantifiers with discrete time T1, … , TN 
can be described by the system of linear algebraic equations in certain fields 

 ∑
=

+=
N

i

Ti
i R)s(xB)s(x)s(A

1

 , (33) 

where: x(s) – n is vector of variable systems represented according to Laplace; 

A(s) - n×n  uninterrupted transfer function matrix; )s(xTi - discrete transformation in times Ti, 

i = 1, … , N vector x(s); R – n – standardized input vector which, according to system linearity, 
can be considered as vector  R’=[ 1 0 0 … 0]’   where ’  – here and further means transportation; 
Bi - n×n – matrixes characterizing quantifier presence with various discrete times in system, 
they consist of 0 and 1 and represent quantification. 

To simplify (33) it is worthwhile to write first of all equations for uninterrupted, and then 
for quantum variables by turns for each discrete time Ti, i = 1, … ,N [1]. 

A(s) is of block type 

 

















 ΦΦ

=

N

N

I

I

)s()s()s(W

)s(A

L

MOMM

L

L

00

00 1

1

 , (34) 

where: N – quantity of different measure point; W(s) - l×l – transfer function matrix; l – 
uninterrupted variables number; �i(s) - l×mi – transfer function matrix; mi – quantifier number 
with discrete time Ti, i = 1, … , N; I i – identity matrixes mi ×mi.  
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Let us define 

 .N,,i),s(xB)s(y ii T
i

T
i K1==  (35) 

Vector )s(y iT
i  consists of the mi vector component iTx , complying with quantifier 

outputs with discrete time Ti. 

From (33), taking into account (35) (considering the presence of A-1(s)), we obtain 

 R)s(A)s(y)s(A)s(x
N

j

T
j

j 1

1

1 −

=

− += ∑ . (36) 

Elements 1−
ija  of matrix � -1 are transfer functions from j knot to i knot of initial system 

with all open quantifiers. Actually, considering quantifiers and vectors )s(y iT
i  to be 

independent input effects which can be defined as zero, from (4) we obtain 

 ∑
=

−=
N

j
jiji ra)s(x

1

1 , (37) 

where: r j – vector elements of normalized input R. 
On the basis of (36), uninterrupted discrete system ‘complex graph’ can be created, which 

gives us system transfer functions by applying the Manson formula. A complex graph is 

uninterrupted discrete system initial graph and discrete graph combination, made up )s(y iT
i . 

In (36), variables )s(y iT
i  are input signals of keys which we will define as input variables. 

Having formed N discrete graph for )s(y iT
i , we may delete quantifiers from the initial graph 

and connect input knots of keys with equivalent knots of discrete graphs by means of branches 
with identity intensification coefficients. In this way, we obtain a complex system graph to 
which the Manson formula is applicable.  

Consider uninterrupted discrete system with N quantizers, so that discreteness es are as 
follows 

 11
1

−==
+

N,,i
q

b

T

T

i

i

i

i
K . (38) 

The system of linear algebraic equations with the time rate for this system is shown in 
(36). 
Multiplying (36) to the correspondent � i, we obtain a ratio system 

 ∑
=

−− =+=
N

j
i

T
jii N,,iR)s(ABy)s(AB)s(y j

1

11 1K . (39) 
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Let � – discrete time – be equal to the least common multiple time of all N times Ti. We 
can carry out discrete conversion of vector x(s) to least common multiple  – time � 

 TT
N

j

T
j

T )R)s(A())s(y)s(A()s(x j 1

1

1 −

=

− += ∑  . (40) 

Assuming the meaning of i
i

n
T

T = , and using discrete transformer property 

nTiTs
n

oi

nTiTsnTT )e)s(z()e)s(g()]s(z)s(g[ ∑
−

=

−=
1

, 

we can write 

 

T

n

i

TsTi
N

TsTi

n

i

TsTiTsTiT

RsA

esyesA

esyesAsx

N

N

NNNN

))((

))(())((

))(())(()(

1
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Let us identify  
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We obtain equation of vectors T
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)i( Y,,Y K1 , then multiply in (39) each equation to  
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Let us carry out discrete transformation (42) to the least common multiple – time �  
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where: 
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Calculating together (43) and (41) and introducing Yi we may obtain input-output relation 
for all variable systems.  

This system contains 

∑
=

+
N

j
jj nmn

1

 

equation, where: n – vector dimension x(s);  mj – number of keys with times Tj;  nj – number 
equal to the relation of the least common multiple time to time Tj. 

Ratio (41), after introducing Yi, can be accepted as discrete system description, inputs of 
which along with outputs of initial uninterruptedly discrete system are variables 

)n(,,i;N,,jY jj
T

)i(j j
101 −== KK . As their representation is 
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it can be considered to be a result of input signals parallelization of keys with time Tj in the 
initial system on nj branches, each of which has transfer coefficient 

).n(,,ie jj
sTi jj 10 −=−

K  

Then, the initial system in (9) can be specified by the discrete graph in which keys are 
open and their outputs are input signals into the system along with initial input signals. At the 
same time, each of these new inputs from quantifiers Tj ( j=1,…,N) can be represented as a set 
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of inputs )n(,,i;N,,jY jj
T

)i(j j
101 −== KK  and, by connecting certain knots by identity 

connections, we can formulate the input-output ratio according to the final discrete graph. 

Discrete graphs for T )i(j j
Y  are built on the basis of  (43). There should be   

∑
=

=
N

j
jnk

1

 

discrete graphs. 
The construction of algorithm for uninterruptedly discrete system signal graph on the basis 

of equations (41) – (43) will be as follows: 
1. On the basis of structure scheme an uninterruptedly discrete system initial graph is 

formed. All quantifiers in it, Tj   j = 1,…,N, are considered to be regulated by diminution open, 
at the same time output signals of keys are considered to be input ones into the system where 

∑
=

N

j
jm

1

 is the quantity of black knots and mj – key number with time Tj. 

2. Form   nj     j = 1,…,N   of the discrete graph, corresponding to time Tj on the following 
procedures: �1) j = 1;  �) in the initial graph we compose only knots corresponding to quantifiers input signals 
with time Tj and connected with them input knots (initial and from quantifiers). As a result we 
obtain the intermediate graph; �2) i j  = 0; 

b) in the intermediate graph we replace all transfer functions of links W with 
sTi jjWe ; 

c) we make input signals parallel from keys Tk, k = 1,…,N, k ≠ j to nk branches, 
substituting each transfer function of the branch W for 

jk,N,k),n(,,lWe kk
sTl kk ≠=−=−

KK 110 . 

d) we substitute knots for black, and transfer functions for their discrete  transformation in 

time 
�

. We enter input knots in the Table through T
)i(k k

Y , then state conformity between knots 

xT and T
)i(k k

Y  by means of identity connections, where it is necessary. We obtain a discrete 

graph corresponding to time Tj. 

e) points b) ÷ d) are now executed nj times, supposing i j = i j + 1; this results in discrete 
graph nj, corresponding to time Tj, ij = 0,…,(nj – 1); 

f) j – we increase by one and repeat points �) ÷ e) for discrete graph construction for all N 
quantifiers, i.e. j = 1,…,N. 
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3. Now we turn back to the initial graph and make all input signals parallel from keys 

N,,j,y jT
j K1= ,  into nj corresponding branches j = 1,…,N.  

We transfer each function from nj branches W and substitute for 

N,j),n(,,kWe jj
sTk jj

KK 110 =−=−
, respectively. We now enter the input knots in the 

Table through variables )n(,,i,Y jj
T

)i(j j
10 −= K .  

We connect to the marked inputs all of discrete graphs, got in item 2, by single connections. 
We set, where necessary, other single connections, proper identical knots. We get the 
component graph. 

4. We substitute all the knots with black, and transfer functions on their discrete 
transformations on time the least common multiple – on time of 

�
. We get the final discrete 

graph of the system. 
5. By applying the Mason rule we determined the necessity of input-output correlation for 

the system variables of xT  for the obtained graph of the system. 
 Now we can formulate the algorithm of receipt of signal graph of multivariate of the 
continuously-discrete system for the case of multiple times. 
1. On the basis of the flow diagram of the system, an initial graph containing white and 

black knots is formed. Black knots have indexes of Ti,  I = 1,.,N, proper to the value of 
time of discreteness. Times are considered well-organized on a decrease. In the initial 
graph keys are considered broken; here the output signals of keys are considered entrance 
knots in the system and black knots correspond to them. 

2. On the initial graph of the system, through the application of the Mason algorithm, the 
discrete graph of 1st level is formed in conformance with the following: 
 All the knots, being by an entrance for the keys with the smallest time of TN, get out in 
the initial graph. They are considered output knots. All the entrance knots, related to the 
indicated output, get out then. Entrance knots can be the entrance signals of the initial system, 
and also outputs of keys with large times. In the Mason algorithm, connections between these 
knots are determined and the intermediate count of 1st level is formed. 
Further, all white knots of the intermediate graph are replaced with black knots, with the index 
of variables of TN, which corresponds to discrete transformation of variables in time of TN, 
and the transmission functions of connections are replaced by their discrete transformations in 
time of TN. Black knots that are proper discrete variables for large times remain unchanged. 
The discrete count of the system of 1st level is formed in the same manner. We set, where 
necessary, single connections for proper identical knots. 
3. The component graph of 1st level is formed. It turns out to be a combination of the initial 
graph of the system and discrete graph of 1st level. Thus the proper black knots of the graph, 
being weakened signals of keys Ti, are united by single connections, i = 1,.,N. A component 
graph of 1st level is the basis for the construction of discrete graph of 2nd level. 
4. Algorithms for the discrete graph of 2nd level, et cetera till N-th number of levels 2, are 
formed as per item a, with the change that in place of keys with time of TN, keys are utilized 
accordingly with time of TN-1 et cetera, till time of T1. As a result of the expounded 
procedure, N number of discrete counts of the system will be formed. 
5. The final count of the system is further formed, which turns out to be a combination of the 
initial and N of discrete counts of the system. 

By single connections, the accordance of knots of discrete counts is set with the entrance 
knots of the initial count. 
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6. In the algorithm of Mason, the input-output correlations are determined for the system 
variables of multirate continuously-discrete system with multiple times. 
The offered method provides a formalised procedure of construction of input-output 
correlations of multirate continuously-discrete systems. 
 
 

6. ABOUT ANALYSIS OF MULTIRATE SYSTEMS PROCESSES 
 

Observed multirate systems applications in the form of equivalent one-time models give 
common reasons for process analysis in given one-time systems. While observing resultant 
correlation, it is not difficult to see that in all cases impulse images of equivalent models 
outputs have the form of rational functions of given variables. Turning to Z–images we will 
have an equation defining the output images as of z. They correspond to: 

 ∫
−= dzz)z(f

j2

1
Y(kT) k 1

π
 . (46) 

The closed contour of integration in equation (46) covers all poles f(z) . Thus, the problem 

of process analysis in given multirate systems becomes reduced to the problem of rational 
functions of pole distribution analysis f(z)  concerning a single circle. 

 
 

References 
 
[1] SEDLAR M. BEKEY G. Signal Flow Graphs of Sampled–Data Systems: A New 

formulation//IEEE Trans. on Automatic Control, Vol. AC-12,2,April 1967, pp.154-161. 
[2] KUO B. Teorija i proektirovanie cifrovykh sistem upravlenija (in Russian).-

M.:Mashinostroenie, 1986. 
[3] COFFEY T.C., WILLIAMS I.J. Stability Analysis of Multiloop, Multirate, Sampled 

Systems // AIAA Journal, Vol.-4, December 1968, pp.129-144. 
[4] DZHURI E.H. Impulsnye sistemy avtomaticheskogo regulirovanija. (in Russian)-

M.:Fizmatgiz,1963. 
[5] GARTMAHER F.R. Teoria matrix (in Russian).- M.:Nauka, 1977.  576 s. 
[6] ALBERTOS P., Block Multirate Input–Output Model for Sampled–Data Control 

Systems/IEEE Trans. On Autom. Control, vol.35, No.9, pp.1085-1088, 1990. 
[7] ARAKI M., YAMAMOTO K., Multivariable multirate sampled-data systems: state-

space description, transfer characteristics, and Nyquist criterion// IEEE Trans. on 
Control, vol.31, pp.145-154, 1986. 

[8] DEZOER CH. VIDJASAGAR M. Sistemy s obratnojj svjazju: vkhod-vykhodnye 
sootnoshenija. (in russian)- M.:Nauka,1983. 380 s. 

[9] MACIEJOWSKI, J.M. Multivariable Feedback design// Addison-Wesley 1989. 
[10] SKOGESTAD S., POSTLETHWAITE I. Multivariable Feedback Control. Analysis and 

Design// Wiley, 1996. 


