PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of stress in steel structures using electromagnetic methods based on utilization of microstrip antenna sensor and monitoring of AC magnetization process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena naprężeń w konstrukcjach stalowych za pomocą metod elektromagnetycznych wykorzystujących czujniki mikropaskowe i umożliwiające monitorowanie procesu magnetyzacji AC
Języki publikacji
EN
Abstrakty
EN
In this paper the results of utilization of electromagnetic methods operating in low and high frequency range for evaluation of stress state and plastic deformation in steel elements are presented. In low frequency range Barkhausen noise and magnetic hysteresis loop method for evaluation of stress level and growth of plastic deformation changes were utilized. The methods allow to monitor parameters related to magnetization process under AC filed. Additionally in this paper the possibility of utilization of high frequency method for estimation of deformation extent (i.e. elongation) caused by stress will be presented. In this experiment the frequency response (the reflection coefficient S11) is measured. The strong relation of antennas resonant frequency to patch dimensions is utilized in order to obtain information about deformation of the sample.
PL
W artykule zostały przedstawione wyniki jakie uzyskano za pomocą metod elektromagnetycznych, zarówno niskoczęstotliwościowych, jak i wysokoczęstotliwościowych do oceny zmian stanu naprężeń oraz deformacji plastycznych w elementach stalowych. W zakresie niskich częstotliwości do oceny stopnia naprężenia oraz zmian plastycznych wykorzystano metodę obserwacji szumu Barkhausena oraz magnetycznej pętli histerezy. Metody te umożliwiają monitowanie parametrów związanych z procesem magnesowania stali polem zmiennym. Dodatkowo w pracy przedstawiono możliwość wykorzystania metody wysokoczęstotliwościowej do oszacowania odkształcenia (w tym przypadku wydłużenia) spowodowanego naprężeniem. W tym celu zaprojektowano i wykonano przetwornik mikropaskowy. W badaniu mierzono odpowiedź częstotliwościową (współczynnik odbicia S11). Silna zależność częstotliwości rezonansowej przetwornika mikropaskowego od wymiarów promiennika została wykorzystana do określenia deformacji próbki.
Rocznik
Tom
Strony
32--36
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology Szczecin
autor
  • West Pomeranian University of Technology Szczecin
autor
  • West Pomeranian University of Technology Szczecin
  • West Pomeranian University of Technology Szczecin
Bibliografia
  • [1] Balanis C.A.: Antenna theory analysis and design, 3rd ed, US: John Wiley & Sons Ltd., 2005.
  • [2] Benchirouf A., Zichner R., Muller C., Kanoun O.: Electromagnetic Simulation of Flexible Strain Sensor based Microstrip Patch Antenna, Interantional Journal of Microwave and Optical Technology IJMOT, 10(6-I)/2015, 397–401.
  • [3] Daliri A., Galehdar A., John S., Rowe W. S. T., Ghorbani K.: Slotted Circular Microstrip Patch Antenna Application in Strain Based Structural Health Monitoring, AIAC14 Fourteenth Australian International Aerospace Congress, 2011.
  • [4] Gaunkar N.: Magnetic hysteresis and Barkhausen noise emission analysis of magnetic materials and composites, Graduate Theses and Dissertations. Iowa State University, 2014.
  • [5] Jiles D.: Microstructure and stress dependence of the magnetic properties of steels, Review of Progress in Quantitative Nondestructive Evaluation, 9/1990, 1821–1827.
  • [6] Liu T., Kikuchi H., Ara K., Kamad Y., Takahas S.: Magnetomechanical effect of low carbon steel studied by two kinds of magnetic minor hysteresis loops, NDT&E International 39/2006, 408–413.
  • [7] Miesowicz K., Staszewski W. J., Korbiel T.: Analysis of Barkhausen noise using wavelet-based fractal signal processing for fatigue crack detection, International Journal of Fatigue, 83(2)/2016, 109–116.
  • [8] Prabhu Gaunkar N.G., Nlebedim I.C., GaunkarPrabhu V.G., Jiles D.C.: Examining the Correlation Between Microstructure and Barkhausen Noise Activity for Ferromagnetic Materials. IEEE Transactions on Magnetics, 51(11)/2015.
  • [9] Psuj G.: Fusion of Multiple Parameters of Magnetic Testing Results for Damage Assessment of Loaded Steel Structures, Studies in Applied Electromagnetics and Mechanics, Vol 40: Electromagnetic Nondestructive Evaluation (XVI), 2015, 192–199.
  • [10] Sorsa A., Leiviskä K., Santa-aho S., Lepistö T.: Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement, NDT & E International, 46/2012, 100–106.
  • [11] Stupakov O., Pal’a J., Tomáš I., Bydžovský J., Novák V.: Investigation of magnetic response to plastic deformation of low-carbon steel, Materials Science and Engineering A 462/2007, 351–354.
  • [12] Tata U., Huang H., Carter R.L., Chiao J.C.: Exploiting a patch antenna for strain measurements, IOP Publishing, Measurement Science and Technology, 20(1)/2009.
  • [13] Wang W., Ge H., Liu T., Liu M.: Study of Patch Antennas for Strain Mesurement, Electromagnetic Nondestructive Evalution (XVIII), 2015.
  • [14] Yi X., Cho C., Fang C., Cooper J., Lakafosis V., Vyas R., Wang Y., Leon R.T., Tentzeris M.M.: Wireless Strain and Crack Sensing Using a Folded Patch Antenna. 6th European Conference on Antennas and Propagations (EUCAP), 1678–1681, 2012.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a39f9289-687e-4504-b84d-24ba8dc3893c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.