PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compaction Studies of Torrefied Willow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of studies of torrefied willow (Salix viminalis L.) compaction. Densification tests were performed using a hydraulic press with a maximum pressure of 216 MPa. The effect of basic parameters of the briquetting process (pressure and temperature) on mechanical parameters of manufactured briquettes were determined. On the basis of the research, it was found that the increase in pressure and temperature of the densification process increases the density and strength of pressed briquettes. The positive effect of temperature is particularly noticeable at lower pressing pressures (36 MPa – 72 MPa). In the case of a temperature of 300 C, the increase in a pressure from 144 MPa to 216 MPa resulted in the decrease in the density and strength of the briquette. It was also found that the briquettes manufactured at this temperature are characterized by lower density and strength than the briquettes obtained at a temperature of 200 oC.
Słowa kluczowe
Rocznik
Strony
183--192
Opis fizyczny
Bibliogr. 34 poz., tab., rys.
Twórcy
autor
  • Institute for Chemical Processing of Coal, Zamkowa 1 St., 41-803 Zabrze, Poland
autor
  • Institute for Chemical Processing of Coal, Zamkowa 1 St., 41-803 Zabrze, Poland
autor
  • Institute for Chemical Processing of Coal, Zamkowa 1 St., 41-803 Zabrze, Poland
  • Institute for Chemical Processing of Coal, Zamkowa 1 St., 41-803 Zabrze, Poland
autor
  • Institute for Chemical Processing of Coal, Zamkowa 1 St., 41-803 Zabrze, Poland
Bibliografia
  • 1. Azam Saeed M., Waqas Ahmad S., Kazmi M., Mohsin M., Feroze M. 2015. Impact of torrefaction technique on the moisture contents, bulk density and calorific value of briquetted biomass. Polish Journal of Chemical Technology. 17, (2), 23–28.
  • 2. Bazagran A., Rough S.L, Mckay G. 2014. Compaction of palm kernel shell biochars for application as solid fuel. Biomass and Bioenergy 70, 489
  • 3. Bergman P. C. A. 2005. Combined torrefaction and pelletisation: the TOP process, ECN publication.
  • 4. Bergman P. C. A., Kiel J. H. A. 2005. Torrefaction for biomass upgrading. Proceedings of the 14th European Biomass Conference & Exhibition, Paris, France
  • 5. Bergman P. C., Boersma A. R., Zwart R. W., Kiel J.H. 2005. Torrefaction for biomass co-firing in existing coal-fired power stations; Report ECN-C-05–013, ECN, Petten.
  • 6. Borowski G. 2012. Porównanie dwóch sposobów określenia wytrzymałości brykietów z materiałów drobnoziarnistych. Postępy Nauki i Techniki, 12, 115–121.
  • 7. Boyd T., De Vries D., Kempthorne H., Wearing J., Wolff I. 2011. Mass & Energy Balance for Mass & Energy Balance for Torrefied Pellet Production, UBC Biomass Pelletization Workshop.
  • 8. Bridgeman T. G., Jones J. M., Shield I., Williams P.T. 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6), 844.
  • 9. Comoglu T. 2007. An overview of compaction equations. Journal of Faculty of Pharmacy, 36, 123.
  • 10. Denny P. J. 2002. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technology 162, 172.
  • 11. Hycnar J., Borowski G., Józefiak T. 2014. Conditions for the preparation of stable ferrosilicon dust briquettes. Inżynieria mineralna, 33, (1), 155–162
  • 12. Jakubiak M., Kordylewski W. 2010. Toryfikacja biomasy. Archiwum Spalania 10, 1–2, 11.
  • 13. Kaliyan N., Morey V.2009. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33, 337.
  • 14. Kiel J. H. A. ECN BO2-technology for biomass upgrading. BUS final meeting. Wageningen, The Netherlands, 20 November 2007.
  • 15. Kopczyński M., Zuwała J. 2013. Biomasa toryfikowana – nowe paliwo dla energetyki. Chemik 6, 540.
  • 16. Kopczyński M., Zuwała J. 2013. Biomass torrefaction as a way for elimination of technical barriers existing in large-scale co-combustion, Polityka Energetyczna 16, 4, 271.
  • 17. Kosturkiewicz B., Janewicz A., Magdziarz A. 2014. Results of Briquetting and Combustion Process on Binder-Free Coking Coal. Pol. J. Environ. Stud. 23, 1385.
  • 18. Li J., Zhang X., Kruczek H., Yang W., Kruczek P. 2014. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant. Energy Conversion and Management 84, 503.
  • 19. Mani S., Tabil L. G, Sokhansanj S., Compaction behaviour of some biomass grinds, AIC Meeting, CSAE/SCGR Program 2002.
  • 20. Mwanga A., Rosenkranz J., Lamberg P. 2015. Testing of Ore Comminution Behavior in the Geometallurgical Context–A Review. Minerals, 5, 276–297.
  • 21. Obernberger I., Thek G.2004. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behavior. Biomass and Bioenergy 27, 653.
  • 22. Obidzinski S. 2014. Utilization of Post-Production Waste of Potato Pulp and Buckwheat Hulls in the Form of Pellets. Pol. J. Environ. Stud. 23, 1391.
  • 23. Prins M. J. Thermodynamic analysis of biomass gasification and torrefaction, PhD thesis, The Netherlands: Technische Universiteit Eindhoven, 2005.
  • 24. Prins M. J., Ptasinski I K. J., Janssen F. J. J. G. 2006. Torrefaction of wood: Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis 77, 35.
  • 25. Reed T. B., Bryant B. 1978. Densification biomass: A new form of solid fuel, SERI – 35, Solar Energy research Institute, Golden, CO, 30.
  • 26. Rejdak M., Winkler M. 2015. Badania procesu zagęszczania wsadu węglowego metodą prasowania hydraulicznego, Karbo 1, 2–7.
  • 27. Sastry S., Fuerstenau D.W. 1973. Mechanisms of agglomerate growth in green pelletization. Powder Technology 7 (2), 97.
  • 28. Stelte W., Clemons C., Holm J.K., Sanadi A.R, Ahrenfeld J., Shang L., Henriksen U.B. 2011. Pelletizing properties of torrefied spruce. Biomass and Bioenergy 35, 4690.
  • 29. Thran D., Witt J., Schaubach K., Kiel J., Carbo M., Maier J., Ndibe C., Koppejan J., Alakangas E., Majer S., Schipfer F. 2016. Moving torrefaction towards market introduction – Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project, Biomass & Bioenergy, Vol.89, 184–200.
  • 30. Toufiq Reza M.,. Lynam J.G., Vasquez V.R., Coronella C.J. 2016. Pelletization of Biochar from Hydrothermally Carbonized Wood, Environmental Progress & Sustainable Energy, 31, 225–234.
  • 31. Tumuluru J.S., Sokhansanj S., Hess R.J., Wright C.T., Boardman R.D. 2016. A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology 7, 5, 384.
  • 32. Tumuluru J.S., Wright CT., Kenny K.L., Hess J.R., A review on biomass densification technologies for energy application, Idaho National Laboratory, 2010.
  • 33. Zuwała J., Czardybon A., Kopczyński M. Biomasa toryfikowana – kierunek energetyka, ale i… rolnictwo, Biomasa, 04.05.2016.
  • 34. Zuwała J., Kopczyński A., Robak J., 2014. Ocena efektywności techniczno-ekonomicznej sprzężonego układu toryfikacja–peletyzacja–współspalanie biomasy. Polityka Energetyczna 17, 4, 147.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a39e7087-6faf-46d7-bd7b-b2737c2ad95d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.