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Zafer ÖZDEMIR

TABLEAUX APPROACH FOR CONTACT

LOGICS INTERPRETED OVER INTERVALS

A b s t r a c t. Contact logics are modal logic that is developed for reasoning

about region-based theories of space. We develope a tableaux approach for con-

tact logics interpreted over intervals (CLIOI) on the reals. For obtaining sound

and complete tableaux-based decision procedures, the main technical tool is the

semantic tableaux approach. We use intensively the following concepts: tableaux

methods, termination of tableaux methods, saturated tableaux, termination the-

orem, soundness theorem, truth lemma, and completeness theorem.

1. Introduction

In classical point-based theory, a point is defined as a primitive notation; it models an

exact location in space and has no length, width, or thickness. Region-Based Theories of

Space (RBTS), also known as pointless theory, arose as an alternative theory to classic

point-based theory. RBTS is a powerful tool for modeling situations about image analysis

or computer vision. Some of the well-known RBTS systems were purposed by Galton.

His model consists of a nonempty set of regions and binary relation of adjacency between

regions. If region a and b in WG are in contact, a and b are called adjacent. The chessboard
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desk is a notable example of an adjacency space. Black and white cells are considered

are regions, and two cells are adjacent relation, if and only if these two cells have an

intersection point. The adjacency relation is symmetric and reflexive in this example.

After Galton’s system, Balbiani et al. [3] and Vakarelov [12] present Kripke-type se-

mantics for contact logics. In their setting, regions are defined as arbitrary subsets of

points in a Kripke frame. The operations are join and complement, the relations are

”contact”(C) and ”part of”(≤). The contact relation denoted by aCb, and is defined as

”a point x in a and a point y in b are such that R(x, y)”. The ordinary inclusion relation

is defined as the part-of relation denoted a ≤ b. The language of contact logics and modal

logic have a relation, CL is a linguistic restriction of the language of modal. Contact

formulas aCb and a ≤ b correspond to modal formulas 〈U〉(a ∧ ♦b) and [U ](a− > b)

where < U > and [U ] are the “somewhere” and “everywhere” modal connectives. As

can be seen in [3, 11], the language of contact logics can be considered as a first-order

language without quantifiers. As shown in [6, 7]. For instance, Balbiani and Kikot [1]

defined Sahlqvist formulas concerning regions and obtained the Sahlqvist Correspondence

Theorem in contact logics [1]. Some elementary properties like transitivity are not de-

finable in contact logics. In modal logic, however, some properties that are definable in

CL are not definable. Fitting introduced the tableaux approach for firstly classical logic

[8]. After that, the tableaux approach was applied to intuitionistic logic and modal logic.

The procedure combines proof theory and the semantic method. The semantic tableaux

approach is a powerful tool for satisfiability problems in logic. If a formula is satisfiable,

the tableaux approach will construct a model of the formula. The paper is structured as

follows. In Section 2, we introduce the syntax and semantics of CLIOI. In Section 3, we

give basic definitions and tableaux rules. In Section 4, we define interpretability condi-

tions, and then prove termination and soundness theorems. The last section is devoted

to saturation definition, truth lemma, and completeness for the tableaux system.

2. Syntax and semantics

The language of contact logics consists consist of a countably infinite set of Boolean

variable BV and Boolean operations (0,∪,−). Members of BV are denoted by p, q, etc.

The set of Boolean terms BVt are inductively defined as follows:

• a ::= p | 0 | −a | (a ∪ b).

The Boolean constructs 1 and ∩ are defined in a standard way. The abbreviations of

Boolean constructs are: 1 for −0 and a∩ b for −(−a∪−b). The set of formulas (BVf ) is

inductively defined as follows:

• θ ::= a ≡ b | ⊥ | ¬θ | (θ ∨ χ).
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For all a, b ∈ R, if a ≤ b then let [a, b] = {c ∈ R : a ≤ c ≤ b} be the closed intervals

determined by a and b. The closed interval [a, b] is said to be regular when a < b. For all

a, b ∈ R, the sets [a,+∞) = {c ∈ R : a ≤ c} and (−∞, b] = {c ∈ R : c ≤ b} will also be

called regular closed intervals. For all S ⊆ R, let Cl(S) and Int(S) respectively denote

the closure and the interior of S concerning the ordinary topology on R. A subset S of R
is said to be regular closed if CL(Int(S)) = S. An interpretation is a function associating

a finite union f(p) of regular closed intervals to each propositional variable p. Given an

interpretation f , a function f̄ is defined associating a finite union f̄(a) of regular closed

intervals to each term a as follows:

• f̄(p) = f(p),

• f̄(0) = ∅,

• f̄(−a) = Cl(R \ f̄(a)),

• f̄(a ∪ b) = f̄(a) ∪ f̄(b).

Let us remark that for all terms a, f̄(a) is a finite union of regular closed intervals. The

relation of satisfaction between interpretation and formulas is defined as follows:

• f |= a ≡ b iff f̄(a) = f̄(b),

• f 6|= ⊥

• f |= ¬θ iff f 6|= θ,

• f |= θ ∨ χ iff f |= θ or f |= χ.

Formula θ is valid iff for all interpretations f , f |= θ.

3. Tableau rules

In Section 3, we give the tableaux rules for contact logics interpreted over intervals. In

semantics, satisfiability is defined between interpretations and formulas. Furthermore, the

language of CL has two categories of expressions which are Boolean terms and formulas.

As a result, tableaux nodes will be labeled by formulas or Boolean terms (x ∈ a, and

x /∈ a, where a is a Boolean term, and x is a variable). If a tableaux consists of one node

labeled with θ, then it is called the root. The tableaux rules are given in formula rules

(next page) and Boolean rules (Page 3). Rules are applied by extending the branches of

constructed trees. Tableaux rules for terms are given in Figure 3.2. Tableaux rules for

formulas are given in Figure 3.1.
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Disjunction Rule

θ ∨ χ

θ χ

Conjunction Rule

¬(θ ∨ χ)

¬θ
¬χ

Negation Rule

¬¬θ

θ

T Equivalent Rule

a ≡ b

x ∈ a
x ∈ b

x /∈ a
x /∈ b

(x = x0 or x is
old in the branch)

F Equivalent Rule

a 6≡ b

x ∈ a
x /∈ b

x /∈ a
x ∈ b

(x is new in
the branch)

Figure 3.1 Formula Rules

T Negation Rule

x ∈ −a

x /∈ a

F Negation Rule

x /∈ −a

x ∈ a

T Union Rule

x ∈ a ∪ b

x ∈ a x ∈ b

F Union Rule

x /∈ a ∪ b

x /∈ a
x /∈ b

Figure 3.2 Term Rules

A branch is closed if and only if one of the following holds:

i there is a node labeled ⊥ in the branch;

ii there is a node labeled x ∈ 0 in the branch;

iii the branch contains two nodes respectively labeled x ∈ a, x /∈ a.

where x is a variable and a is a Boolean term. If all branches in the tableaux are closed,

a tableaux is called a closed tableaux. Let us apply the table rules to the contact formula

(a ∪ b) 6≡ −1 ∧ (a ∪ b) ≡ −b.
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(a ∪ b) 6≡ 1 ∧ (a ∪ b) ≡ −b

(a ∪ b) 6≡ 1

(a ∪ b) ≡ −b

x ∈ (a ∪ b)

x /∈ 1

x /∈ (a ∪ b)

x ∈ 1
�

x ∈ (a ∪ b)

x /∈ −b

x /∈ a

x /∈ b

x ∈ b

x /∈ a ∪ b
�

�

Figure 3.3 Closed tableaux

We will say a variable x occurs in a branch β iff there exists term a such that the expression

x : a is the label of some node in β. Given a formula θ, its initial tableaux is the labeled tree

consisting of exactly one node (called root) labeled with θ. By abuse of notation, we will

always consider, from the beginning of the computation starting with the initial tableaux

of a given formula, that there is some occurring variable denoted x0. Let x0, x1, . . . , xn be

a list of the variables occurring in β.

4. Soundness

In Theorem 4.5, we give the soundness of the tableaux system. Before the soundness

theorem, we define the interpretability of a branch.

Let f be an interpretation. We say β is interpretable in f , if there exists x̄0, x̄1, ..., x̄n in

R such that the following conditions holds:

• for all nodes labeled ”θ” that occur in β, f |= θ,

• for all nodes labeled ”xi ∈ a” that occur in β, x̄i ∈ f̄(a),

• for all nodes labeled ”xi /∈ a” that occur in β, x̄i /∈ f̄(a).
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We say that the variable xi is regularly interpretable, if for all propositional variables

p, x̄i ∈ Int(f(p)) or x̄i /∈ f(p).

Lemma 4.1. Let xi be a regularly interpreted variable, then for all terms a, x̄i ∈
Intf̄(a) or x̄i /∈ f̄(a).

Proof. Lemma will be proved by using mathematical induction on Boolean terms,

and only the case of a = −b is considered. It is easy to show the other cases. Suppose

x̄i ∈ Intf̄(b) or x̄i 6∈ f̄(b), we demonstrate that x̄i ∈ Intf̄(−b) or x̄i 6∈ f̄(−b). By

contradiction, suppose x̄i 6∈ Intf̄(−b) and x̄i ∈ f̄(−b). Since x̄i 6∈ Intf̄(−b), therefore

x̄i ∈ R \ Intf̄(−b). Hence, x̄i ∈ Cl(R \ f̄(−b)). Thus, x̄i ∈ Cl(R \ Cl(R \ f̄(b))).

Consequently, x̄i ∈ Cl(Intf̄(b)). Since f̄(b) is a finite union of regular closed intervals,

therefore Cl(Intf̄(b)) = f̄(b). As x̄i ∈ Cl(Intf̄(b)), therefore x̄i ∈ f̄(b). Since x̄i ∈
Intf̄(b) or x̄i 6∈ f̄(b), therefore x̄i ∈ Intf̄(b). Since x̄i ∈ f̄(−b), therefore x̄i ∈ Cl(R\ f̄(b)).

Hence, x̄i 6∈ Intf̄(b). It is a contradiction.

�

The finite sequence of reals (x̄0, x̄1, ..., x̄n) is called interpretation of β in f . It is regular

for the variable xi, if xi is regularly interpreted in it.

Now we can define interpretable tableaux. A tableaux is called interpretable in f , if

one of the tableaux branches is interpretable in f . “From now on, when we write p0 and

p1, we respectively mean −p andp.

Lemma 4.2. Let θ be a formula. If θ is satisfiable then the initial tableaux for θ is

interpretable.

Proof. Suppose θ is satisfiable. Let f be an interpretation such that f |= θ. Let

p1, ..., pk be the propositional variables occuring in θ. Let ε1, .., εk ∈ {0, 1} be such that

f̄(pε11 ∩ ... ∩ p
εk
k ) is a nonempty finite union of regular closed intervals. Let x̄0 be an

element in the interior of this finite union. Obviously, (x̄0) is a regular interpretation for

the variable x0 . �

Lemma 4.3. A closed branch cannot be interpreted by a regular interpretation of its

variables.

Proof. Let β be a branch and f be an interpretation. Suppose β is interpretable in

f and x0, x1, ..., xn occurs in β. There exists x̄0, x̄1, ..., x̄n ∈ R which satisfy compatibility

conditions. Since β is closed, β has node labeled with ⊥, ”x ∈ 0” or ”x ∈ a” and ”x /∈ a”.

Case 1, β contains ⊥. Therefore f |=⊥, it is a contradiction.

Case 2, β contains ”x ∈ 0”, since β interpretable in f , x̄i ∈ f̄(0) which means x̄i ∈ ∅.
It is a contradiction.

Case 3, β contains ”xi ∈ a” and ”xi /∈ a”. Since β interpretable in M , x̄i ∈ f̄(a) and

x̄i 6∈ f̄(a). It is a contradiction. �
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Lemma 4.4. If a tableaux t is regularly interpretable then all tableaux obtained from

t by applying one of the tableaux rules are regularly interpretable.

Proof. Let x0, ..., xn be a list of the variables occurring in a branch β of t that is

regularly interpretable in an interpretation of f . Let x̄0, ..., x̄n in R be the associated

elements. Suppose t′ is an extension of t after applying one of the tableaux rules. We

want to show that t′ is regularly interpretable in f .

We firstly consider the case of the 6≡ rule. Suppose a 6≡ b occurs in t. We want to

show that t′ is regularly interpretable. This rule extend the current branch β in two new

branches β′ and β′′ by adding (for β′), ”y′ ∈ a” and ”y′ 6∈ b” and adding (for β”) ”y′ 6∈ a”

and ”y′ ∈ b”, y′ being a new variable. We have to show that either branch β′ can be

regularly interpreted or branch β′′ can be regularly interpreted. Since the branch β is

regularly interpreted, it means that f |= a 6≡ b. This implies that f̄(a) 6= f̄(b). Since f̄(a)

and f̄(b) are finite unions of closed intervals, this implies that there is a real number r

which either belongs to Intf̄(a) and does not belong to Intf̄(b), or belongs to f̄(b) but

does not belong to f̄(a). The former case corresponds to the branch β′ whereas the latter

case corresponds to the branch β′′. In the branch β′, we should extend the interpretation

f by the interpretation f ′ which is like f on W and which is such that f ′(y′) = r. In the

branch β′′, it is the same: we should extend the interpretation f by the interpretation f ′′

which is like f on W and which is such that f ′′(y′) = r. Then, clearly, in the former case,

f ′ is a regular interpretation of the branch β′ whereas in the latter case, f ′′ is a regular

interpretation of the branch β′′. We secondly consider the case of the ≡ rule. Suppose

a ≡ b occurs in t. We want to show that t′ is regularly interpretable. This rule extend the

current branch β in two new branches β′ and β′′ by adding (for β′), x′ ∈ a” and ”x′ ∈ b”
and adding (for β) ”x′ 6∈ a” and ”x′ 6∈ b”, x′ being an old variable. We have to show that

either branch β′ can be regularly interpreted or branch β′′ can be regularly interpreted.

Since the branch β is regularly interpreted, it means that f |= a ≡ b. This implies that

f̄(a) = f̄(b). Since f̄(a) and f̄(b) are finite unions of closed intervals, this implies that

there is a real number r which belongs to Intf̄(a) and f̄(b), or not belongs to Intf̄(b) and

does not belong to f̄(a). The former case corresponds to the branch β′ whereas the latter

case corresponds to the branch β′′. In the branch β′, we should extend the interpretation

f by the interpretation f ′ which is like f on W and which is such that f ′(x′) = r. In the

branch β′′, it is the same: we should extend the interpretation f by the interpretation f ′′

which is like f on W and which is such that f ′′(x′) = r. Then, clearly, in the former case,

f ′ is a regular interpretation of the branch β′ whereas in the latter case, f ′′ is a regular

interpretation of the branch β′′.

�

Theorem 4.5. If formula θ is satisfiable, then all tableaux computed from the initial

tableaux for θ are regularly interpretable and, consequently, they are open.
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Proof. By Lemmas 4.3 and 4.4, since θ is satisfiable, then θ is regularly interpretable

in some interpretation f . All tableaux obtained from θ are regularly interpretable and

obviously, they are open. �

5. Completeness

In Theorem 5.4, the completeness theorem for the tableaux method is proved. In this

respect, the concept of saturation is essential. A branch β in some tableaux is called

saturated if the following conditions hold for all nodes n ∈ β:

• if n is labelled ¬¬θ, then β contains a node labelled θ,

• if n is labelled θ ∨ χ, then β contains a node labelled θ or χ,

• if n is labelled ¬(θ ∨ χ), then β contains nodes labelled ¬θ and ¬χ,

• if n is labelled a ≡ b and β contains the variables x, then β contains nodes labelled

x ∈ a and x ∈ b, or β contains nodes labelled x 6∈ a and x 6∈ b,

• if n is labelled a 6≡ b, then for some variable x either β contains nodes label ledx ∈ a
and x 6∈ b, or β contains nodes labelled x 6∈ a and x ∈ b,

• if n is labelled x ∈ −a, then β contains a node labelled x /∈ a,

• if n is labelled x /∈ −a, then β contains a node labelled x ∈ a,

• if n is labelled x ∈ a ∪ b, then β contains a node labelled x ∈ a or x ∈ b,

• if n is labelled x /∈ a ∪ b, then β contains nodes labelled x 6∈ a and x 6∈ b.

A tableaux is said to be saturated if all its branches are saturated.

Let β be a saturated open branch. Let x0, x1, ..., xn be a list of the variables occurring

in β. Let I0, I1, ..., In be the following finite unions of regular intervals (where 0 < ε <
1

2
):

· I0 = (−∞, 1− ε] ∪ [1 + ε, 2− ε] ∪ ... ∪ [n− 1 + ε, n− ε] ∪ [n+ ε,+∞) ,

· I1 = [1− ε, 1 + ε],

. . .

· In = [n− ε, n+ ε].

Let f : p ∈ BV → f(p) ⊆ R be the function defined as follows:

f(p) = ∪{Ik : 0 ≤ k ≤ n and ”xk ∈ p” occurs in β}.
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Remark 5.1. For all p, f(p) is a finite union of regular closed intervals.

Remark 5.2. Let x̄k = k for each k ∈ N such that k ≤ n. For all k ∈ N, k ≤ n, and

for all p ∈ BV , x̄k ∈ Int(f(p)) or x̄k /∈ f(p).

Lemma 5.3 is important in the proof of the completeness theorem.

Lemma 5.3. Let t be an open saturated tableaux, β be an open branch in t and f be

an interpretation for β defined as above. Let p be a Boolean variable and x0, x1, ..., xn be

variables which occur in β. For all k ∈ N, 0 ≤ k ≤ n, the following conditions are hold:

(i) If xk ∈ a occurs in β, then Ik ⊆ f̄(a).

(ii) If xk /∈ a occurs in β, then Int(Ik) ∩ f̄(a) = ∅.

Proof. The proof is done by induction on the term a. The case ”p” follows by

definition of f(p).

Let us consider xk ∈ −a occurs in β. We want to show that Ik ⊆ f̄(−a). Since

xk ∈ −a occurs in β,then xk /∈ a occurs in β. By induction hypothesis Int(Ik)∩ f̄(a) = ∅.
Therefore, Int(Ik) ⊆ (R \ f̄(a)) ⊆ Cl(R \ f̄(a)). By the definition of f̄ , Int(Ik) ⊆ f̄(−a).

Consequently, Ik ⊆ f̄(−a).

Let us consider xk ∈ a ∪ b. We want to show that Ik ⊆ f̄(a ∪ b). Since β is saturated,

xk ∈ a occurs in β or xk ∈ b occurs in β. By induction hypothesis Ik ⊆ f̄(a) or Ik ⊆ f̄(b).

Therefore, Ik ⊆ f̄(a) ∪ f̄(b). By the definition of f̄ , Ik ⊆ f̄(a ∪ b).
Let us consider ”xk /∈ −a” occurs in β. We want to show that Int(Ik) ∩ f̄(−a) =

∅. Obviously, ”xk ∈ a” occurs in β. By induction hypothesis, Ik ⊆ f̄(a). Therefore

Int(Ik) ∩ Cl(R \ f̄(a)) = ∅. So, Int(Ik) ∩ f̄(−a) = ∅.
Let us consider xk /∈ a ∪ b. We want to satisfy that Int(Ik) ∩ f̄(a ∪ b) = ∅. Since β

is saturated, xk /∈ a occurs in β and xk /∈ b occurs in β. By the induction hypothesis,

Int(Ik) ∩ f̄(a) = ∅ and Int(Ik) ∩ f̄(b) = ∅. By the definition of f̄ , Int(Ik) ∩ f̄(a ∪ b) = ∅.
This completes the induction. �

Theorem 5.4. Let θ be a formula. Starting the computations with the initial tableaux

of θ, it is possible, after finitely many applications of the tableaux rules, to obtain a

saturated tableaux.

Proof. Let t0 be the initial tableaux for θ. Notice that for all nodes labelled with

a label of the form a 6≡ b, it is not needed to apply the 6≡-rule more than once in order

to obtain a saturated tableaux. Moreover, notice that for all labels of the form a 6≡ b

occurring during the computations, a ≡ b is a subformula of θ. Finally, notice that the

symbols x1, x2, . . . occurring during the computations are only created by an application

of the 6≡-rule. For all these reasons, the number of symbols x1, x2, . . . occurring during the

computations will be at most equal to the number of subformulas of θ of the form a ≡ b.

Hence, it is bounded. As a result, if immediately follows that starting the computations



12 ZAFER ÖZDEMIR

with t0, it is possible, after finitely many applications of the tableaux rules, to obtain a

saturated tableaux. �

Theorem 5.5. If |= θ, then there is a closed tableaux computed from ¬θ.

Proof. By contraposition. Suppose t is a saturated and open tableaux computed

from ¬θ and β is an open branch in it. Since t is saturated, therefore β is saturated too.

Let f be the interpretation for θ determined by β. By Lemma 5.3, we have f 6|= θ, it

contradicts the validity of θ.

�

A careful analysis of the tableau rules immediately leads us to the conclusion that the

depth of a tableau computed from a given formula φ is linear in the number of symbols

in φ. Since tableaux are finitely branching, for this reason, together with Theorems 4.5,

4.6 and 5.4 allow us to conclude that the problem of determining if a given formula is

satisfiable in the class of all models is NP-complete. This complexity result has already

been discussed in [4] where it was obtained by means of a more complicated argument

based on the filtration method.

6. Conclusion

In this work, a general tableaux method for contact logic interpreted over intervals is

described. Using the tableaux approach that we developed in the paper, it is easy to

show that the satisfiability problem for the formulas of the language of CLIOI is NP-

complete. Much remains to be done. We can extend the language with predicates such

as a < b, convex(a), meets(a, b), etc. For instance, a < b is true in a model if all real

numbers in a’s interpretation precede all real numbers in b’s interpretation, convex(a) is

true in a model if a’s interpretation consists of a regular closed interval, meets(a, b) is true

in a model if the intersection of a’s interpretation with b’s interpretation is a singleton.

Acknowledgements

I would like to acknowledge the assistance of Philippe Balbiani (Institut de Recherche

en Informatique de Toulouse, Toulouse, France) and Çiğdem Gencer (Istanbul Aydın
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