Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paw graph consists of a triangle with a pendant edge attached to one of the three vertices. We obtain a multigraph by adding exactly one repeated edge to the paw. Now, let D be a directed graph obtained by orientating the edges of that multigraph. For 12 of the 18 possibilities for D, we establish necessary and sufficient conditions on n for the existence of a [formula] design. Partial results are given for the remaining 6 possibilities for D.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--30
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Illinois State University Normal, IL 61790-4520, USA
autor
- Virginia Polytechnic Institute and State University Blacksburg, VA 24061, USA
autor
- Illinois State University Normal, IL 61790-4520, USA
autor
- Jacobs High School Algonquin, IL 60102, USA
autor
- Illinois Wesleyan University Bloomington, IL 61701, USA
autor
- University of Michigan Ann Arbor, MI 48109, USA
Bibliografia
- [1] R.J.R. Abel, F.E. Bennett, M. Greig, PBD-Closure, [in:] Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz (eds), 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007, 246-254.
- [2] P. Adams, D. Bryant, M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373-410.
- [3] J.-C. Bermond, J. Schónheim, G-decomposition of Kn, where G has four vertices or less, Discrete Math. 19 (1977), 113-120.
- [4] J.-C. Bermond, C. Huang, A. Rosa, D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin. 10 (1980), 211-254.
- [5] D. Bryant, S. El-Zanati, Graph Decompositions, [in:] Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz (eds), 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007, 477-486.
- [6] R.C. Bunge, C.J. Cowan, L.J. Cross, S.I. El-Zanati, A.E. Hart, D. Roberts, A.M. Young-blood, Decompositions of complete digraphs into small tripartite digraphs, J. Combin. Math. Combin. Comput. 102 (2017), 239-251.
- [7] R.C. Bunge, S.I. El-Zanati, L. Febles Miranda, J. Guadarrama, D. Roberts, E. Song, A. Zale, On the X-fold spectra of tripartite multigraphs of order 4 and size 5, Ars Combin., to appear.
- [8] R.C. Bunge, S.I. El-Zanati, H.J. Fry, K.S. Krauss, D.P. Roberts, C.A. Sullivan, A.A. Un-sicker, N.E. Witt, On the spectra of bipartite directed subgraphs of K%, J. Combin. Math. Combin. Comput. 98 (2016), 375-390.
- [9] C.J. Colbourn, J. H. Dinitz (eds), Handbook of Combinatorial Designs, 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007.
- [10] G. Ge, Group divisible designs, [in:] Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz (eds), 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007, 255-260.
- [11] G. Ge, S. Hu, E. Kolotoglu, H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic groom/ing in optical networks, J. Combin. Des. 23 (2015), 233-273.
- [12] M. Greig, R. Mullin, PBDs: Recursive Constructions, [in:] Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz (eds), 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007, 236-246.
- [13] A. Hartman, E. Mendelsohn, The last of the triple systems, Ars Combin. 22 (1986), 25-41.
- [14] R.C. Read, R.J. Wilson, An Atlas of Graphs, Oxford University Press, Oxford, 1998.
- [15] R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976, 647-659.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a38933ec-e104-42c4-b9ae-f43aceb9c27c