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Abstract. The paw graph consists of a triangle with a pendant edge attached to one of the
three vertices. We obtain a multigraph by adding exactly one repeated edge to the paw. Now,
let D be a directed graph obtained by orientating the edges of that multigraph. For 12 of the
18 possibilities for D, we establish necessary and sufficient conditions on n for the existence
of a (K∗

n, D)-design. Partial results are given for the remaining 6 possibilities for D.
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1. INTRODUCTION

If a and b are integers we denote {a, a + 1, . . . , b} by [a, b] (if a > b, then [a, b] = ∅).
Let Zm denote the set of integers modulo m. For a graph H, let V (H) and E(H)
denote the vertex set of H and the edge set of H, respectively. Similarly, for a digraph
D, let V (D) and A(D) denote the vertex set of D and the arc set of D, respectively.
The order and the size of a graph H (or digraph D) are |V (H)| and |E(H)| (or |V (D)|
and |A(D)|), respectively.

We denote the complete multipartite graph with parts of sizes ai for 1 ≤ i ≤ m by
Ka1,a2,...,am . If ai = a for all i ∈ [1, m], then we use the notation Km×a. Furthermore, let
V (Km×a) = Zma with vertex partition {V0, V1, . . . , Vm−1} where Vi = {j ∈ Zma : j ≡ i
(mod m)}. Then E(Km×a) consists of all edges {i, j} such that i 6≡ j (mod m).

The complete graph of order n with a hole of size t, denoted Kn \Kt, is the graph
with vertex set V and edge set { {a, b} : a ∈ V, b ∈ V \ U, a 6= b } where |V | = n,
U ⊆ V , and |U | = t. The vertices in U are said to be the vertices in the hole.

Let tG denote the graph consisting of t vertex-disjoint copies of G. The join of
two vertex-disjoint graphs G and H, denoted G ∨ H, is the graph with vertex set
V (G)∪V (H) and edge set E(G)∪E(H)∪{{a, b} : a ∈ V (G), b ∈ V (H)}. For example,
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K5x+1 could be described as (xK5 ∨K1) ∪Kx×5. Note that, by convention, the union
of two graphs implies the graphs are edge-disjoint, but not necessarily vertex-disjoint.

Let H be a graph and let G be a set of subgraphs of H. We will refer to a graph
G ∈ G as a G-block. A G-decomposition of H is a set ∆ = {G1, G2, . . . , Gr} of pairwise
edge-disjoint subgraphs of H such that for every i ∈ [1, r], Gi

∼= G for some G ∈ G
and such that E(H) =

⋃r
i=1 E(Gi). Of particular importance is when G = {G}, in

which case we write “G-decomposition of H” instead of “{G}-decomposition of H”.
A G-decomposition of Kn is also known as a (Kn, G)-design. The set of all n for which
Kn admits a G-decomposition is called the spectrum of G. The spectrum has been
determined for many classes of graphs, including all graphs on at most 4 vertices [3]
and all graphs on 5 vertices (see [4] and [11]). We direct the reader to [2] and [5] for
recent surveys on graph decompositions.

A vertex-disjoint collection of blocks of a (Kn, G)-design that contains every vertex
of Kn is called a parallel class. A (Kn, G)-design is called resolvable if the blocks
of the design can be partitioned into parallel classes. In particular, a resolvable
(Kn, K3)-design is called a Kirkman Triple System, or more concisely a KTS(n).

1.1. DEFINITIONS FOR DIGRAPHS

Similar concepts to those defined above for undirected graphs can be defined for
digraphs. First, we introduce additional notation. For an undirected graph G, let G∗

denote the digraph obtained from G by replacing each edge {u, v} ∈ E(G) with the
arcs (u, v) and (v, u). Thus K∗

n, the complete digraph of order n, is the digraph on
n vertices with the arcs (u, v) and (v, u) between every pair of distinct vertices u and v.

Let H and D be digraphs such that D is a subgraph of H. A D-decomposition
of H is a set ∆ = {D1, D2, . . . , Dr} of pairwise arc-disjoint subgraphs of H each of
which is isomorphic to D and such that A(H) =

⋃r
i=1 A(Di). As with the undirected

case, a D-decomposition of K∗
n is also known as a (K∗

n, D)-design, and the set of all n
for which K∗

n admits a D-decomposition is called the spectrum of D.
The spectra for several digraphs of small order have been determined. This includes

the spectra for all digraphs on at most 3 vertices [13], all bipartite digraphs on 4 vertices
with up to 5 arcs [8], and the orientations of a triangle with a pendent edge [6].

The paw graph consists of a K3 with a pendant edge. We obtain a multigraph
when we replace one edge in the paw with a double edge (resulting in one of three
non-isomorphic multigraphs). The spectra for these multigraphs are found in [7]. In this
paper, we extend the known results on small digraphs by determining the spectra for
the orientations of two such multigraphs (Figure 1) and by giving partial results on the
orientations of the remaining multigraph (Figure 2). The digraphs under investigation
are shown in Figures 1 and 2 along with a key that denotes a labeled copy of each of
the 18 digraphs. We use the naming convention found in An Atlas of Graphs [14] by
Read and Wilson. For example, D68[w, x, y, z] refers to the digraph with vertex set
{w, x, y, z} and arc set

{
(x, w), (x, y), (x, z), (z, x), (z, y)

}
.
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Fig. 1. The 12 digraphs for which we settle the spectrum. Note that these are all possible
orientations of the multigraphs obtained from adding a double edge to the paw graph that

shares a vertex with the pendent edge
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Fig. 2. The 6 digraphs for which we give partial results. Note that these are all possible
orientations of the multigraph obtained from adding a double edge to the paw graph that

does not share a vertex with the pendent edge
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1.2. SOME BASIC RESULTS

The obvious necessary conditions for a digraph D to decompose K∗
n are

(A) |V (D)| ≤ n,
(B) |A(D)| divides |A(K∗

n)| = n(n− 1), and
(C) both gcd{outdegree(v) : v ∈ V (D)} and gcd{indegree(v) : v ∈ V (D)} divide n−1.

Applying these necessary conditions to the 18 digraphs under consideration, we obtain
the following necessary conditions:

Lemma 1.1. For D ∈ {D68, D71, D72, D73, D78, D79, D80, D81, D82, D83, D88, D93,
D94, D95, D96, D97, D98, D103}, a (K∗

n, D)-design exists only if n ≥ 5 and n ≡ 0 or 1
(mod 5).

Given a digraph D, the reverse orientation of D, denoted Rev(D), is the digraph
with vertex set V (D) and arc set {(v, u) : (u, v) ∈ A(D)}. We make use of the following
fact:

Observation 1.2. Let D and H be digraphs. a D-decomposition of H exists if and
only if a (Rev(D))-decomposition of Rev(H) exists.

The fact that K∗
n
∼= Rev(K∗

n) leads to the following corollary:

Corollary 1.3. Let D be a digraph. a (K∗
n, D)-design exists if and only if

a (K∗
n, Rev(D))-design exists.

Note that 16 of the 18 digraphs of interest in this paper occur in pairs with respect
to their reverse orientations. Namely,

D68 ∼= Rev(D97), D71 ∼= Rev(D94), D72 ∼= Rev(D88),
D73 ∼= Rev(D103), D78 ∼= Rev(D93), D79 ∼= Rev(D82),
D80 ∼= Rev(D96), D81 ∼= Rev(D95).

The other 2 digraphs in this paper are reverse orientations of themselves. Namely,
D83 ∼= Rev(D83) and D98 ∼= Rev(D98).

The following theorems on decompositions of complete graphs and complete mul-
tipartite graphs are used extensively in proving our main results. Note that these
background results concern graphs, as opposed to digraphs. All of these results can be
found in the Handbook of Combinatorial Designs [9] (see for example [1] and [10]).

Theorem 1.4. If n ≡ 3 (mod 6), then a KTS(n) exists.

Theorem 1.5. If n ≡ 0 (mod 6), then a (Kn − I, K3)-design exists, where I is
a 1-factor in Kn.

Theorem 1.6. a {K3, K4}-decomposition of Kn exists if and only if n ≡ 0 or 1
(mod 3) and n 6= 6.

Theorem 1.7. If n is an odd positive integer, then there exists a {K3, K5}-decomposition
of Kn.
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Theorem 1.8. The necessary and sufficient conditions for the existence of
a K3-decomposition of Ku×m are

(i) u ≥ 3,
(ii) (u− 1)m ≡ 0 (mod 2), and
(iii) u(u− 1)m2 ≡ 0 (mod 6).

The following is a well-known result that is a special case of Wilson’s Fundamental
Construction (see [12]).

Theorem 1.9. If there exists a (Ku×m, Kr)-design, then there exists a (Ku×mt, Kr×t)-
-design for any positive integer t.

2. EXAMPLES OF SMALL DESIGNS

We now turn our attention to the designs of small order which will be used for
the general constructions.

Given a digraph represented by the notation D[a, b, c, d] and some i ∈ Zn, we define
D[a, b, c, d] + i = D[a + i, b + i, c + i, d + i]

where all addition is performed in Zn. By convention, define ∞+ 1 =∞.

Example 2.1. There exists a (K∗
5 , D)-design for D ∈ {D71, D73, D78, D79, D82, D83,

D93, D94, D98, D103}.
Let V (K∗

5 ) = Z4 ∪ {∞}.
A (K∗

5 , D71)-design is given by {D71[2, 0,∞, 1] + i : i ∈ Z4}.
A (K∗

5 , D73)-design is given by {D73[1, 0,∞, 2] + i : i ∈ Z4}.
A (K∗

5 , D78)-design is given by {D78[2, 0,∞, 1] + i : i ∈ Z4}.
A (K∗

5 , D79)-design is given by
{D79[3, 1,∞, 0], D79[3, 2, 1,∞], D79[1, 3, 0,∞], D79[1, 2, 3, 0]}.

A (K∗
5 , D83)-design is given by {D83[∞, 1, 0, 3] + i : i ∈ Z4}.

A (K∗
5 , D98)-design is given by

{D98[2, 3,∞, 0], D98[1, 3, 0,∞], D98[0, 2, 1,∞], D98[0, 1, 2,∞]}.
Applying Corollary 1.3, we obtain the remaining designs.

Example 2.2. There exists a (K∗
6 , D)-design for D ∈ {D68, D71, D72, D73, D78, D79,

D80, D81, D82, D83, D88, D93, D94, D95, D96, D97, D98, D103}.
Let V (K∗

6 ) = Z6.
A (K∗

6 , D68)-design is given by {D68[5, 0, 3, 2] + i : i ∈ Z6}.
A (K∗

6 , D72)-design is given by {D72[4, 0, 2, 3] + i : i ∈ Z6}.
A (K∗

6 , D71)-design is given by {D71[1, 0, 5, 2] + i : i ∈ Z6}.
A (K∗

6 , D73)-design is given by
{D73[5, 2, 0, 1], D73[5, 1, 0, 2], D73[3, 0, 4, 5],
D73[3, 5, 4, 0], D73[1, 4, 2, 3], D73[1, 3, 2, 4]}.
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A (K∗
6 , D78)-design is given by {D78[4, 0, 3, 1] + i : i ∈ Z6}.

A (K∗
6 , D79)-design is given by {D79[3, 0, 1, 2] + i : i ∈ Z6}.

A (K∗
6 , D80)-design is given by {D80[3, 0, 1, 5] + i : i ∈ Z6}.

A (K∗
6 , D81)-design is given by {D81[1, 0, 5, 3] + i : i ∈ Z6}.

A (K∗
6 , D83)-design is given by

{D83[3, 2, 4, 1], D83[5, 2, 1, 4], D83[4, 5, 3, 1],
D83[0, 5, 1, 3], D83[2, 0, 4, 3], D83[1, 0, 3, 4]}.

A (K∗
6 , D98)-design is given by

{D98[0, 5, 4, 1], D98[3, 1, 4, 5], D98[0, 3, 2, 5],
D98[1, 2, 3, 5], D98[1, 0, 4, 2], D98[3, 4, 0, 2]}.

Applying Corollary 1.3, we obtain the remaining designs.

Example 2.3. There exists a (K∗
10, D)-design for D ∈ {D68, D71, D73, D78, D79,

D82, D83, D93, D94, D97, D98, D103}.
Let V (K∗

10) = Z9 ∪ {∞}.
A (K∗

10, D68)-design is given by
{D68[3, 2, 4, 0] + 3i : i ∈ Z3} ∪ {D68[6, 0, 8, 5] + 3i : i ∈ Z3}
∪ {D68[1, 4, 0, 6] + 3i : i ∈ Z3} ∪ {D68[7, 4, 5, 8] + 3i : i ∈ Z3}
∪ {D68[5, 7,∞, 6] + 3i : i ∈ Z3} ∪ {D68[0,∞, 7, 8] + 3i : i ∈ Z3}.

A (K∗
10, D71)-design is given by

{D71[4, 0,∞, 7] + i : i ∈ Z9} ∪ {D71[6, 0, 3, 8] + i : i ∈ Z9}.
A (K∗

10, D73)-design is given by
{D73[6, 0,∞, 7] + i : i ∈ Z9} ∪ {D73[4, 0, 8, 1] + i : i ∈ Z9}.

A (K∗
10, D78)-design is given by

{D78[4, 0,∞, 2] + i : i ∈ Z9} ∪ {D78[8, 0, 4, 3] + i : i ∈ Z9}.
A (K∗

10, D79)-design is given by
{D79[8, 0, 4, 2] + 3i : i ∈ Z3} ∪ {D79[7, 4, 5, 8] + 3i : i ∈ Z3}
∪ {D79[1, 4, 0, 6] + 3i : i ∈ Z3} ∪ {D79[1, 8, 7,∞] + 3i : i ∈ Z3}
∪ {D79[0, 6,∞, 7] + 3i : i ∈ Z3} ∪ {D79[∞, 0, 8, 5] + 3i : i ∈ Z3}.

A (K∗
10, D83)-design is given by

{D83[∞, 0, 5, 2] + i : i ∈ Z9} ∪ {D83[1, 0, 2, 5] + i : i ∈ Z9}.
A (K∗

10, D98)-design is given by
{D98[∞, 0, 5, 2] + i : i ∈ Z9} ∪ {D98[1, 0, 2, 5] + i : i ∈ Z9}.

Applying Corollary 1.3, we obtain the remaining designs.

Example 2.4. There exists a (K∗
11, D)-design for D ∈ {D68, D71, D72, D73, D78,

D79, D80, D81, D82, D83, D88, D93, D94, D95, D96, D97, D98, D103}.
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Let V (K∗
11) = Z11.

A (K∗
11, D68)-design is given by

{D68[2, 0, 9, 5] + i : i ∈ Z11} ∪ {D68[1, 0, 10, 3] + i : i ∈ Z11}.
A (K∗

11, D71)-design is given by
{D71[6, 0, 2, 7] + i : i ∈ Z11} ∪ {D71[1, 0, 10, 8] + i : i ∈ Z11}.

A (K∗
11, D72)-design is given by

{D72[3, 0, 5, 6] + i : i ∈ Z11} ∪ {D72[8, 0, 2, 9] + i : i ∈ Z11}.
A (K∗

11, D73)-design is given by
{D73[4, 0, 3, 2] + i : i ∈ Z11} ∪ {D73[5, 0, 8, 9] + i : i ∈ Z11}.

A (K∗
11, D78)-design is given by

{D78[3, 0, 1, 5] + i : i ∈ Z11} ∪ {D78[4, 0, 3, 2] + i : i ∈ Z11}.
A (K∗

11, D79)-design is given by
{D79[3, 0, 2, 4] + i : i ∈ Z11} ∪ {D79[8, 0, 6, 1] + i : i ∈ Z11}.

A (K∗
11, D80)-design is given by

{D80[8, 0, 5, 6] + i : i ∈ Z11} ∪ {D80[3, 0, 2, 9] + i : i ∈ Z11}.
A (K∗

11, D81)-design is given by
{D81[6, 0, 1, 4] + i : i ∈ Z11} ∪ {D81[10, 0, 4, 6] + i : i ∈ Z11}.

A (K∗
11, D83)-design is given by

{D83[5, 0, 3, 1] + i : i ∈ Z11} ∪ {D83[4, 0, 1, 3] + i : i ∈ Z11}.
A (K∗

11, D98)-design is given by
{D98[5, 0, 3, 1] + i : i ∈ Z11} ∪ {D98[4, 0, 1, 3] + i : i ∈ Z11}.

Applying Corollary 1.3, we obtain the remaining designs.

Example 2.5. There exists a (K∗
3×5, D)-design for D ∈ {D68, D71, D72, D73, D78,

D79, D80, D81, D82, D83, D88, D93, D94, D95, D96, D97, D98, D103}.
Let V (K∗

3×5) = Z15 with vertex partition {Vi : i ∈ Z3}, where
Vi = {j ∈ Z15 : j ≡ i (mod 3)}.

A (K∗
3×5, D68)-design is given by

{D68[1, 0, 7, 2] + i : i ∈ Z15} ∪ {D68[8, 0, 14, 4] + i : i ∈ Z15}.
A (K∗

3×5, D71)-design is given by
{D71[7, 0, 10, 11] + i : i ∈ Z15} ∪ {D71[14, 0, 5, 13] + i : i ∈ Z15}.

A (K∗
3×5, D72)-design is given by

{D72[11, 0, 4, 5] + i : i ∈ Z15} ∪ {D72[7, 0, 8, 10] + i : i ∈ Z15}.
A (K∗

3×5, D73)-design is given by
{D73[2, 0, 11, 10] + i : i ∈ Z15} ∪ {D73[7, 0, 1, 5] + i : i ∈ Z15}.
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A (K∗
3×5, D78)-design is given by

{D78[14, 0, 5, 4] + i : i ∈ Z15} ∪ {D78[7, 0, 10, 2] + i : i ∈ Z15}.
A (K∗

3×5, D79)-design is given by
{D79[5, 0, 4, 8] + i : i ∈ Z15} ∪ {D79[10, 0, 1, 2] + i : i ∈ Z15}.

A (K∗
3×5, D80)-design is given by

{D80[8, 0, 4, 5] + i : i ∈ Z15} ∪ {D80[4, 0, 8, 10] + i : i ∈ Z15}.
A (K∗

3×5, D81)-design is given by
{D81[11, 0, 5, 13] + i : i ∈ Z15} ∪ {D81[13, 0, 10, 11] + i : i ∈ Z15}.

A (K∗
3×5, D83)-design is given by

{D83[2, 0, 5, 1] + i : i ∈ Z15} ∪ {D83[7, 0, 1, 5] + i : i ∈ Z15}.
A (K∗

3×5, D98)-design is given by
{D98[2, 0, 5, 1] + i : i ∈ Z15} ∪ {D98[7, 0, 1, 5] + i : i ∈ Z15}.

Applying Corollary 1.3, we obtain the remaining designs.
Example 2.6. There exists a (K∗

4×5, D)-design for D ∈ {D68, D71, D72, D73, D78,
D79, D80, D81, D82, D83, D88, D93, D94, D95, D96, D97, D98, D103}.

Let V (K∗
4×5) = Z20 with vertex partition {Vi : i ∈ Z4}, where

Vi = {j ∈ Z20 : j ≡ i (mod 4)}.
A (K∗

4×5, D68)-design is given by
{D68[13, 0, 18, 1] + i : i ∈ Z20} ∪ {D68[11, 0, 7, 5] + i : i ∈ Z20}
∪ {D68[10, 0, 9, 6] + i : i ∈ Z20}.

A (K∗
4×5, D71)-design is given by

{D71[3, 0, 6, 19] + i : i ∈ Z20} ∪ {D71[10, 0, 2, 9] + i : i ∈ Z20}
∪ {D71[14, 0, 17, 15] + i : i ∈ Z20}.

A (K∗
4×5, D72)-design is given by

{D72[18, 0, 5, 14] + i : i ∈ Z20} ∪ {D72[6, 0, 2, 3] + i : i ∈ Z20}
∪ {D72[15, 0, 10, 17] + i : i ∈ Z20}.

A (K∗
4×5, D73)-design is given by

{D73[3, 0, 10, 5] + i : i ∈ Z20} ∪ {D73[6, 0, 11, 9] + i : i ∈ Z20}
∪ {D73[7, 0, 19, 1] + i : i ∈ Z20}.

A (K∗
4×5, D78)-design is given by

{D78[9, 0, 3, 1] + i : i ∈ Z20} ∪ {D78[6, 0, 10, 7] + i : i ∈ Z20}
∪ {D78[18, 0, 6, 15] + i : i ∈ Z20}.

A (K∗
4×5, D79)-design is given by

{D79[15, 0, 9, 3] + i : i ∈ Z20} ∪ {D79[10, 0, 13, 2] + i : i ∈ Z20}
∪ {D79[13, 0, 15, 1] + i : i ∈ Z20}.
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A (K∗
4×5, D80)-design is given by

{D80[2, 0, 5, 14] + i : i ∈ Z20} ∪ {D80[14, 0, 2, 3] + i : i ∈ Z20}
∪ {D80[5, 0, 10, 17] + i : i ∈ Z20}.

A (K∗
4×5, D81)-design is given by

{D81[11, 0, 1, 3] + i : i ∈ Z20} ∪ {D81[15, 0, 3, 10] + i : i ∈ Z20}
∪ {D81[19, 0, 9, 15] + i : i ∈ Z20}.

A (K∗
4×5, D83)-design is given by

{D83[1, 0, 10, 5] + i : i ∈ Z20} ∪ {D83[2, 0, 17, 6] + i : i ∈ Z20}
∪ {D83[7, 0, 3, 14] + i : i ∈ Z20}.

A (K∗
4×5, D98)-design is given by
{D98[3, 1, 7, 6] + 4i : i ∈ Z5} ∪ {D98[19, 1, 6, 7] + 4i : i ∈ Z5}
∪ {D98[3, 8, 9, 6] + 4i : i ∈ Z5} ∪ {D98[15, 8, 6, 9] + 4i : i ∈ Z5}
∪ {D98[13, 4, 15, 1] + 4i : i ∈ Z5} ∪ {D98[17, 4, 1, 15] + 4i : i ∈ Z5}
∪ {D98[17, 18, 5, 15] + 4i : i ∈ Z5} ∪ {D98[3, 18, 15, 5] + 4i : i ∈ Z5}
∪ {D98[14, 12, 6, 17] + 4i : i ∈ Z5} ∪ {D98[2, 12, 17, 6] + 4i : i ∈ Z5}
∪ {D98[2, 11, 18, 12] + 4i : i ∈ Z5} ∪ {D98[8, 11, 12, 18] + 4i : i ∈ Z5}.

Applying Corollary 1.3, we obtain the remaining designs.

Example 2.7. There exists a (K∗
5×5, D)-design for D ∈ {D68, D71, D72, D73, D78,

D79, D80, D81, D82, D83, D88, D93, D94, D95, D96, D97, D98, D103}.

Let V (K∗
5×5) = Z25 with vertex partition {Vi : i ∈ Z5}, where

Vi = {j ∈ Z25 : j ≡ i (mod 5)}.

A (K∗
5×5, D68)-design is given by
{D68[6, 0, 9, 2] + i : i ∈ Z25} ∪ {D68[19, 0, 13, 1] + i : i ∈ Z25}
∪ {D68[16, 0, 14, 3] + i : i ∈ Z25} ∪ {D68[18, 0, 21, 17] + i : i ∈ Z25}.

A (K∗
5×5, D71)-design is given by
{D71[24, 0, 6, 9] + i : i ∈ Z25} ∪ {D71[19, 0, 7, 11] + i : i ∈ Z25}
∪ {D71[18, 0, 22, 23] + i : i ∈ Z25} ∪ {D71[8, 0, 21, 13] + i : i ∈ Z25}.

A (K∗
5×5, D72)-design is given by
{D72[1, 0, 2, 23] + i : i ∈ Z25} ∪ {D72[24, 0, 9, 16] + i : i ∈ Z25}
∪ {D72[8, 0, 11, 14] + i : i ∈ Z25} ∪ {D72[17, 0, 6, 19] + i : i ∈ Z25}.

A (K∗
5×5, D73)-design is given by
{D73[7, 0, 22, 21] + i : i ∈ Z25} ∪ {D73[9, 0, 1, 4] + i : i ∈ Z25}
∪ {D73[11, 0, 19, 17] + i : i ∈ Z25} ∪ {D73[12, 0, 6, 8] + i : i ∈ Z25}.
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A (K∗
5×5, D78)-design is given by
{D78[4, 0, 3, 9] + i : i ∈ Z25} ∪ {D78[6, 0, 4, 11] + i : i ∈ Z25}
∪ {D78[12, 0, 18, 17] + i : i ∈ Z25} ∪ {D78[13, 0, 22, 23] + i : i ∈ Z25}.

A (K∗
5×5, D79)-design is given by
{D79[24, 0, 6, 13] + i : i ∈ Z25} ∪ {D79[9, 0, 8, 14] + i : i ∈ Z25}
∪ {D79[16, 0, 3, 21] + i : i ∈ Z25} ∪ {D79[8, 0, 22, 23] + i : i ∈ Z25}.

A (K∗
5×5, D80)-design is given by
{D80[24, 0, 2, 23] + i : i ∈ Z25} ∪ {D80[1, 0, 9, 16] + i : i ∈ Z25}
∪ {D80[17, 0, 11, 14] + i : i ∈ Z25} ∪ {D80[8, 0, 6, 19] + i : i ∈ Z25}.

A (K∗
5×5, D81)-design is given by

{D81[18, 0, 9, 12] + i : i ∈ Z25} ∪ {D81[12, 0, 6, 8] + i : i ∈ Z25}
∪ {D81[19, 0, 7, 11] + i : i ∈ Z25} ∪ {D81[11, 0, 8, 9] + i : i ∈ Z25}.

A (K∗
5×5, D83)-design is given by

{D83[9, 0, 4, 1] + i : i ∈ Z25} ∪ {D83[7, 0, 1, 4] + i : i ∈ Z25}
∪ {D83[12, 0, 8, 2] + i : i ∈ Z25} ∪ {D83[11, 0, 2, 8] + i : i ∈ Z25}.

A (K∗
5×5, D98)-design is given by

{D98[9, 0, 4, 1] + i : i ∈ Z25} ∪ {D98[7, 0, 1, 4] + i : i ∈ Z25}
∪ {D98[12, 0, 8, 2] + i : i ∈ Z25} ∪ {D98[11, 0, 2, 8] + i : i ∈ Z25}.

Applying Corollary 1.3, we obtain the remaining designs.

Example 2.8. There exists a (K∗
6×5, D)-design for D ∈ {D68, D97}.

Let V (K∗
6×5) = Z30 with vertex partition {Vi : i ∈ Z6}, where

Vi = {j ∈ Z30 : j ≡ i (mod 6)}.

A (K∗
6×5, D68)-design is given by
{D68[3, 0, 25, 20] + i : i ∈ Z30} ∪ {D68[27, 0, 23, 16] + i : i ∈ Z30}
∪ {D68[9, 0, 29, 28] + i : i ∈ Z30} ∪ {D68[21, 0, 17, 4] + i : i ∈ Z30}
∪ {D68[15, 0, 19, 8] + i : i ∈ Z30}.

Applying Corollary 1.3, we obtain a (K∗
6×5, D97)-design.

Example 2.9. There exists a (K∗
3×10, D)-design for D ∈ {D68, D71, D73, D78, D79,

D82, D83, D93, D94, D97, D98, D103}.

First, let D ∈ {D68, D71, D73, D78, D79, D82, D83, D93, D94, D97, D98, D103}.
By Theorem 1.8, there exists a (K3×2, K3)-design. Furthermore, by Theorem 1.9,
there exists a (K3×10, K3×5)-design. Thus, a (K∗

3×10, K∗
3×5)-design exists. Since

a (K∗
3×5, D)-design exists by Example 2.5, the desired (K∗

3×10, D)-design exists.
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Example 2.10. There exists a ((K10 \K5)∗, D)-design for D ∈ {D68, D97}.
Let V ((K10 \K5)∗) = Z5 ∪ {∞1,∞2,∞3,∞4,∞5}, where the vertices in the hole

are ∞1, ∞2, ∞3, ∞4, and ∞5.
A ((K10 \K5)∗, D68)-design is given by

{D68[∞1, 0, 1,∞3], D68[∞3, 2,∞4, 0], D68[2, 3,∞5, 0], D68[2,∞2, 4, 0],
D68[∞3, 1, 3,∞2], D68[∞4, 1, 0,∞5], D68[2, 1,∞1, 4], D68[0,∞1, 1, 2],
D68[∞2, 3, 4,∞1], D68[∞5, 4,∞2, 2], D68[4,∞5, 3, 2], D68[2,∞4, 0, 4]
D68[∞3, 3, 1,∞4], D68[2,∞3, 3, 4]}.

Applying Corollary 1.3, we obtain a ((K10 \K5)∗, D97)-design.

Example 2.11. There exists a (K∗
15, D)-design for D ∈ {D68, D97}.

First, partition V (K∗
15) into three sets V0, V1, and V2 each of cardinality 5. Next for

each i ∈ Z3, let Gi be the graph with vertex set Vi∪Vi+1 and edge set
{
{u, v} : u, v∈Vi

}

∪
{
{u, w} : u ∈ Vi, w ∈ Vi+1

}
, where subscript addition is done modulo 3. Then

{G0, G1, G2} is a (K∗
15, (K10 \K5)∗)-design. Since a ((K10 \K5)∗, D)-design exists by

Example 2.10, the desired (K∗
15, D)-design exists.

Example 2.12. There exists a (K∗
30, D)-design for D ∈ {D68, D71, D73, D78, D79,

D82, D83, D93, D94, D97, D98, D103}.
Observe that K∗

30 = 3K∗
10 ∪K∗

3×10. Since a (K∗
10, D)-design exists by Example 2.3

and a (K∗
3×10, D)-design exists by Example 2.9, the desired (K∗

30, D)-design exists.

Example 2.13. There exists a (K∗
31, D)-design for D ∈ {D68, D71, D72, D73, D78,

D79, D80, D81, D82, D83, D88, D93, D94, D95, D96, D97, D98, D103}.
A (K31, K6)-design can be obtained from a projective plane of order 5. Thus, there

exists a (K∗
31, K∗

6 )-design. Since a (K∗
6 , D)-design exists by Example 2.2, the desired

(K∗
31, D)-design exists.

Example 2.14. There exists a (K∗
35, D)-design for D ∈ {D68, D97}.

Observe that

K∗
35 = (6K∗

5 ∨K∗
5 ) ∪K∗

6×5 = (K∗
10 ∪

5⋃

i=1
(K10 \K5)∗) ∪K∗

6×5.

Since a (K∗
10, D)-design exists by Example 2.3, a ((K10 \K5)∗, D)-design exists by Ex-

ample 2.10, and a (K∗
6×5, D)-design exists by Example 2.8, the desired (K∗

35, D)-design
exists.

3. MAIN RESULTS

We finally address the general constructions needed to piece together the small designs
mentioned previously to prove (near) sufficiency of the necessary conditions.
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Theorem 3.1. If n ≡ 1 (mod 5) and n ≥ 6, then a (K∗
n, D)-design exists for

D ∈ {D68, D71, D72, D73, D78, D79, D80, D81, D82, D83, D88, D93, D94, D95, D96,
D97, D98, D103}.
Proof. Let D ∈ {D68, D71, D72, D73, D78, D79, D80, D81, D82, D83, D88, D93, D94,
D95, D96, D97, D98, D103} and let n = 5x + 1 for some positive integer x. When x is 1,
2, or 6, the result follows from Examples 2.2, 2.4, and 2.13 respectively. The remainder
of the proof breaks into three cases.
Case 1. x ≡ 0 or 1 (mod 3) with x ≥ 3 and x 6= 6.
By Theorem 1.6 there exists a {K3, K4}-decomposition of Kx. Thus, by Theorem 1.9,
there exists a {K3×5, K4×5}-decomposition of Kx×5. Note that

K5x+1 = (xK5 ∨K1) ∪Kx×5 = Kx×5 ∪
x⋃

i=1
K6.

Thus,

K∗
n = K∗

x×5 ∪
x⋃

i=1
K∗

6 .

Since there exists a (K∗
3×5, D)-design (by Example 2.5) and there exists

a (K∗
4×5, D)-design (by Example 2.6), there exists a (K∗

x×5, D)-design. Since there
also exists a (K∗

6 , D)-design (by Example 2.2), there exists a (K∗
n, D)-design.

Case 2. x ≡ 2 (mod 6).
Let x = 6y + 2 for some integer y ≥ 1. Hence, n = 10(3y + 1) + 1. By Theorem 1.8
there exists a K3-decomposition of K(3y+1)×2. Thus, by Theorem 1.9, there exists
a K3×5-decomposition of K(3y+1)×10. Note that

K30y+11 = ((3y + 1)K10 ∨K1) ∪K(3y+1)×10 = K(3y+1)×10 ∪
3y+1⋃

i=1
K11.

Thus,

K∗
n = K∗

(3y+1)×10 ∪
3y+1⋃

i=1
K∗

11.

Since there exists a (K∗
3×5, D)-design (by Example 2.5), there exists a (K∗

(3y+1)×10, D)-
-design. Since there also exists a (K∗

11, D)-design (by Example 2.4), there exists
a (K∗

n, D)-design.
Case 3. x ≡ 5 (mod 6).
Let x = 6y + 5 for some integer y ≥ 0. Hence, n = 5(6y + 5) + 1. By Theorem 1.7
there exists a {K3, K5}-decomposition of K6y+5. Thus, by Theorem 1.9, there exists
a {K3×5, K5×5}-decomposition of K(6y+5)×5. Note that

K30y+26 = ((6y + 5)K5 ∨K1) ∪K(6y+5)×5 = K(6y+5)×5 ∪
6y+5⋃

i=1
K6.
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Thus,

K∗
n = K∗

(6y+5)×5 ∪
6y+5⋃

i=1
K∗

6 .

Since there exists a (K∗
3×5, D)-design (by Example 2.5) and there exists

a (K∗
5×5, D)-design (by Example 2.7), there exists a (K∗

(6y+5)×5, D)-design. Since
there also exists a (K∗

6 , D)-design (by Example 2.2), there exists a (K∗
n, D)-design.

Theorem 3.2. If n ≡ 0 (mod 5) with n ≥ 5, then a (K∗
n, D)-design exists for

D ∈ {D71, D73, D78, D79, D82, D83, D93, D94, D98, D103}.
Proof. Let D ∈ {D71, D73, D78, D79, D82, D83, D93, D94, D98, D103} and let n = 5x
for some positive integer x. When x is 1, 2, or 6, the result follows from Examples 2.1,
2.3, and 2.12, respectively. The remainder of the proof breaks into three cases similar
to those of the proof of Theorem 3.1. We proceed in a similar fashion to the proof of
Theorem 3.1 with the exceptions that in Case 1 we now have

K∗
n = K∗

x×5 ∪
x⋃

i=1
K∗

5 ,

in Case 2 we have

K∗
n = K∗

(3y+1)×10 ∪
3y+1⋃

i=1
K∗

10,

and in Case 3 we have

K∗
n = K∗

(6y+5)×5 ∪
6y+5⋃

i=1
K∗

5 .

Theorem 3.3. If n ≡ 0 (mod 5) with n ≥ 10, then a (K∗
n, D)-design exists for

D ∈ {D68, D97}.
Proof. It must first be proven that no (K∗

5 , D68)- or (K∗
5 , D97)-design exists. Let

V (K∗
5 ) = {a, b, c, d, e}. Suppose for contradiction that there exists a (K∗

5 , D68)-design
with D68[a, b, c, d] as one of the blocks. Note that the outdegree of each vertex in K∗

5
is 4. Furthermore, since outdegree(b) = 3 in D68[a, b, c, d], there must exist a copy of
D68 in the design with a vertex whose outdegree is 1. However, this is a contradiction
since there are no vertices in D68 with an outdegree of 1. Therefore, a (K∗

5 , D68)-design
does not exist, and by Corollary 1.3, a (K∗

5 , D97)-design does not exist.
Let n = 5x for some integer x ≥ 2. When x is 2, 3, 6, or 7, the result follows from

Examples 2.3, 2.11, 2.12, and 2.14, respectively. The remainder of the proof breaks
into two cases.
Case 1. x ≡ 1 or 2 (mod 3) with x ≥ 4 and x 6= 7.
By Theorem 1.6, there exists a {K3, K4}-decomposition of Kx−1. Thus, by Theorem 1.9,
there exists a {K3×5, K4×5}-decomposition of K(x−1)×5. Observe that

K∗
n = ((x− 1)K∗

5 ∨K∗
5 ) ∪K∗

(x−1)×5 = K∗
(x−1)×5 ∪K∗

10 ∪
x−1⋃

i=2
(K10 \K5)∗.
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Since there exists a (K∗
3×5, D)-design (by Example 2.5) and there exists

a (K∗
4×5, D)-design (by Example 2.6), there exists a (K∗

(x−1)×5, D)-design. Since there
also exists a (K∗

10, D)-design (by Example 2.3) and a ((K10 \ K5)∗, D)-design (by
Example 2.10), there exists a (K∗

n, D)-design.
Case 2. x ≡ 0 (mod 3).
We consider two subcases. Suppose that x ≡ 3 (mod 6). By Theorem 1.4, a KTS(x), i.e.
a resolvable (Kx, K3)-design, exists. After the removal of a parallel class, this becomes
a (K x

3 ×3, K3)-design. Thus, by Theorem 1.9, there exists a (K x
3 ×15, K3×5)-design.

Note that
K∗

n = x

3 K∗
15 ∪K∗

x
3 ×15.

Since there exists a (K∗
3×5,D)-design (by Example 2.5), there exists a (K∗

x
3×15,D)-design.

Since there also exists a (K∗
15, D)-design (by Example 2.11), there exists

a (K∗
n, D)-design.

Finally, suppose that x ≡ 0 (mod 6). By Theorem 1.5 a (Kx − I, K3)-design
exists, where I is a 1-factor in Kx. Equivalently, this is a (K x

2 ×2, K3)-design. Thus,
by Theorem 1.9, there exists a (K x

2 ×10, K3×5)-design. Note that

K∗
n = x

2 K∗
10 ∪K∗

x
2 ×10.

Since there exists a (K∗
3×5, D)-design (by Example 2.5), there exists a (K∗

x
2×10, D)-design.

Since there also exists a (K∗
10, D)-design (by Example 2.3), there exists

a (K∗
n, D)-design.

We combine the results from the previous 3 theorems to show that the necessary
conditions in Lemma 1.1 are sufficient for D ∈ {D68, D71, D73, D78, D79, D82, D83,
D93, D94, D97, D98, D103} with the exceptions that neither a (K∗

5 , D68)-design nor
a (K∗

5 , D97)-design exists. Hence, our main result can be summarized as Theorem 3.4.
Theorem 3.4. For D ∈ {D68, D71, D73, D78, D79, D82, D83, D93, D94, D97, D98,
D103}, there exists a (K∗

n, D)-design if and only if n ≡ 0 or 1 (mod 5) and n ≥ 5
with the exceptions that neither a (K∗

5 , D68)- nor a (K∗
5 , D97)-design exists.

For D ∈ {D72, D80, D81, D88, D95, D96}, we have shown that a (K∗
n, D)-design

exists when n ≡ 1 (mod 5) and n ≥ 6. As for the case n ≡ 0 (mod 5), the existence of
a (K∗

n, D)-design appears to be difficult to determine at this time. Note that the under-
lying undirected multigraph G for such a digraph D is a K3 with a pendent double-edge.
In [7], it shown that G does not decompose 2K5, the complete multigraph of order 5
and edge multiplicity 2. Thus, a (K∗

5 , D)-design cannot exist. However, a result of
Wilson’s [15] ensures that if n ≡ 0 (mod 5) is sufficiently large, then a (K∗

n, D)-design
exists.
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