PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical solution of a malignant invasion model using some finite difference methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, one standard and four nonstandard finite difference methods are used to solve a cross-diffusion malignant invasion model. The model consists of a system of nonlinear coupled partial differential equations (PDEs) subject to specified initial and boundary conditions, and no exact solution is known for this problem. It is difficult to obtain theoretically the stability region of the classical finite difference scheme to solve the set of nonlinear coupled PDEs, this is one of the challenges of this class of method in this work. Three nonstandard methods abbreviated as NSFD1, NSFD2, and NSFD3 are considered from the study of Chapwanya et al., and these methods have been constructed by the use of a more general function replacing the denominator of the discrete derivative and nonlocal approximations of nonlocal terms. It is shown that NSFD1, which preserves positivity when used to solve classical reaction-diffusion equations, does not inherit this property when used for the cross-diffusion system of PDEs. NSFD2 and NSFD3 are obtained by appropriate modifications of NSFD1. NSFD2 is positivity-preserving when the functional relationship [ψ(h)]2=2ϕ(k) holds, while NSFD3 is unconditionally dynamically consistent with respect to positivity. First, we show that NSFD2 and NSFD3 are not consistent methods. Second, we tried to modify NSFD2 in order to make it consistent but we were not successful. Third, we extend NSFD3 so that it becomes consistent and still preserves positivity. We denote the extended version of NSFD3 as NSFD5. Finally, we compute the numerical rate of convergence in time for NSFD5 and show that it is close to the theoretical value. NSFD5 is consistent under certain conditions on the step sizes and is unconditionally positivity-preserving.
Wydawca
Rocznik
Strony
art. no. 20220244
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
  • Department of Mathematics and Applied Mathematics, Nelson Mandela University, University Way, Summerstrand, Gqeberha, South Africa
  • Department of Mathematics and Applied Mathematics, Nelson Mandela University, University Way, Summerstrand, Gqeberha, South Africa
Bibliografia
  • [1] A. M. Wazwaz, Partial Differential Equations and Solitary Wave Theory, Springer, Berlin, 2009
  • [2] A. Jefferey, Applied Partial Differential Equations: An Introduction, Academic Press, USA, 2002, 978-0123822529, 389.
  • [3] A. D. Polyanin, Partial Differential Equations, 2008, [online]. Available from: http://www.scholarpedia.org/article/Partial_differential_equation [ accessed 13 September 2021].
  • [4] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd edition, SIAM, Wisconsin, 2004, 978-0898715675, 431.
  • [5] M. M. Khalsaraei, Sh. Heydari, and L. D. Algoo, Positivity preserving nonstandard finite difference schemes applied to cancer growth model, J. Cancer Treat. Res 4 (2017), no. 4, 27–33, DOI: https://10.11648/j.jctr.20160404.11.
  • [6] R. E. Mickens, Advances in the Application of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2005, 978-9812564047, 664.
  • [7] G. F. Sun, G. R. Liu, and M. Li, An efficient explicit finite-difference scheme for simulating coupled biomass growth on nutritive substrates, Math. Probl. Eng. 2015 (2015), 1–17, DOI: https://doi.org/10.1155/2015/708497.
  • [8] G. F. Sun, G. R. Liu, and M. Li, A novel explicit positivity-preserving finite-difference scheme for simulating bounded growth of biological films, Int. J. Comput. Methods 13 (2016), no. 2, 1640014, DOI: https://doi.org/10.1142/S0219876216400132.
  • [9] Y. Yu, W. Deng, and Y. Wu, Positivity and boundedness preserving schemes from space-time fractional predator-prey reaction-diffusion model, Comp. Math. Appl. 69 (2015), no. 8, 743–759, DOI: https://doi.org/10.1016/j.camwa.2015.02.024.
  • [10] R. E. Mickens, Exact solutions to a finite-difference model of a nonlinear reaction-advection equation: Implications for numerical analysis, Numer. Methods Partial Differ. Equ. 5 (1989), no. 4, 313–325, DOI: https://doi.org/10.1002/num.1690050404.
  • [11] R. Anguelov and J. M-S. Lubuma, Contributions to the mathematics of the nonstandard finite difference method and applications, Numer. Methods Partial Differ. Equ. 17 (2001), no. 5, 518–543, DOI: https://doi.org/10.1002/num.1025.
  • [12] F. B. Hildebrand, Finite-Difference Equations and Simulations, Prentice-Hall, New Jersey, 1968, 978-0133172300, 338.
  • [13] R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994, 978-9810214586, 264.
  • [14] R. Anguelov and J. M-S. Lubuma, Nonstandard finite difference method by nonlocal approximation, Math. Comput. Simul. 61 (2003), no. 2003, 465–475, DOI: https://doi.org/10.1016/S0378-4754(02)00106-4.
  • [15] R. Anguelov, P. Kama, and J. M-S. Lubuma, On non-standard finite difference models of reaction-diffusion equations, J. Comput. Appl. Math. 175 (2005), no. 1, 11–29, DOI: https://doi.org/10.1016/j.cam.2004.06.002.
  • [16] H. P. Bhatt and A. Q. M. Khaliq, Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation. Comput. Phys. Commun. 200 (2015), 117–138.
  • [17] Y. O. Tijani, A. R. Appadu, and A. A. Aderogba, Some finite difference methods to model biofilm growth and decay: classical and non-standard, Comput. 9 (2021), no. 11, 123, DOI: https://doi.org/10.3390/computation9110123.
  • [18] M. Chapwanya, J. M-S. Lubuma, and R. E. Mickens, Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences, Comput. Math. Appl. 68 (2014), no. 9, 1071–1082, DOI: https://doi.org/10.1016/j.camwa.2014.04.021.
  • [19] N. Agoulmine, Autonomic Network Management and Principles from Concepts to Applications, Elsevier, California, 2009, 978-0123821904, 281.
  • [20] V. Volpert and S. Petrovskii, Reaction-diffusion waves in biology, Phys. Life Rev. 6 (2009), no. 4, 267–310, DOI: https://doi.org/10.1016/j.plrev.2009.10.002.
  • [21] B. P. Marchant, J. Norbury, and A. J. Perumpanani, Traveling shock waves arising in a model of malignant invasion, SIAM J. Appl. Math. 60 (2000), no. 2, 463–476, DOI: https://doi.org/10.1137/S0036139998328034.
  • [22] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed., Springer, New York, 2003, 978-038795228, 814.
  • [23] J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed., Springer, New York, 2002, 978-0387952239, 551.
  • [24] L. Chen and A. Jü ngel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations 60 (2006), no. 1, 39–59, DOI: https://doi.org/10.1016/j.jde.2005.08.002.
  • [25] D. Le, Cross-diffusion equations on n spatial dimensional domains, Electronic Journal of Differential Equations, Fifth Mississippi State Conference on Differential Equations and Computational Simulations, vol. 10, Mississippi, 2003, pp. 193–210.
  • [26] J. Shi, Z. Xie, and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, J. Appl. Anal. Comput. 24 (2010), no. 3, 95–119. https://jxshix.people.wm.edu/shi/2011-Shi-Xie-Little.pdf.
  • [27] M. Kovel and B. Zubik-Kowal, Numerical solutions for a model of tissue invasion and migration of tumour cells, Comput. Math. Methods Med. 2011 (2010), 1–16, DOI: https://doi.org/10.1155/2011/452320.
  • [28] M. Fuest, S. Heydari, P. Knobloch, J. Lankeit, and T. Wick, Global Existence of Classical Solutions and Numerical Simulations of a Cancer Invasion Model, 2022, https://arxiv.org/pdf/2205.08168v1.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3892303-e7cc-4846-bf62-4f2ca9aba319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.