PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental Aspects of a Common Rail Diesel Engine Fuelled with Biodiesel/Diesel Blends

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study was the research concerning the emissions of limited exhaust gas components of the AVL research engine equipped with Common Rail injection system, fuelled with different biodiesel blends and diesel fuel as reference. In details, the engine was powered with mixtures of rapeseed methyl esters (RME) with DF in the volumetric ratios of 10:90, 20:80, 30:70, 40:60 and 50:50. The tests were performed at: 1200, 1700 and 2200 rpm and the torque T = 5…35 Nm (step 5 Nm). The analysis of the obtained results showed that the emissions of hydrocarbons (HC) from the tested engine fuelled with biodiesel are lower than that of diesel fuel. Carbon monoxide (CO) emissions are also lower, except for low rotational speeds and low engine load T = 5…20 Nm. As for nitrogen oxides (NOx) emissions, it is also lower than that for the diesel fuel, except for high engine loads, in the range above 25 Nm, for each rotation speed of the engine load characteristics. Moreover, in this research it was confirmed that emission of particulate matter (PM) is also slightly reduced for the engine fuelled with tested blends.
Słowa kluczowe
Twórcy
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland
  • Motor Vehicle Institute, Faculty of Engineering, Latvia University of Life Sciences and Technologies, 5 J. Cakstes Blvd., Jelgava LV3001, Latvia
  • Department of Industrial Engineering and Management, International Hellenic University, Sindos 57400, Thessaloniki, Greece
  • Faculty of Material Science, Technology and Design, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
  • 1. Chong, C.T., Chiong, M.C., Ng, J., Lim, M., Tran, M. Valera-Medina, A., Chong, W.W.F. Oxygenated sunflower biodiesel: Spectroscopic and emission quantification under reacting swirl spray conditions. Energy. 2019; 178: 804–813. http://dx.doi.org/10.1016/j.energy.2019.04.201.
  • 2. Patil, V.V., Patil, R.S. Experimental investigations to predict optimistic biodiesel(s) and its optimistic operating conditions by varying ignition delay period and fuel spray pressures for lower emissions and better performance. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020; 234(19): 3890–3902. https://doi.org/10.1177/0954406220917693.
  • 3. Biodiesel. Biodiesel – Tankstellen im Deutschland. 3 Auflange Union Zur Forderung Von Oel-Und Proteinptlanzen. Im Jahr 2016.
  • 4. Raport Grupy Energii Odnawialnej (REG) z 2009r. (in Polish).
  • 5. Graboski, M.S., McCormick, R.L. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science. 1998; 24(2): 125–164. DOI: 10.1016/S03601285(97)00034-8.
  • 6. Marchese, A.J., Vaughn, T.L., Kroenlein, K., Dryer, F.L. Ignition delay of fatty acid methyl ester fuel droplets: Microgravity experiments and detailed numerical modeling. Proceedings of the Combustion Institute. 2011; 33(2): 2021–2030. https://doi.org/10.1016/j.proci.2010.06.044.
  • 7. Anas, M.I., Khalid, A., Zulkifli, F.H., Hushim M.F., Manshoor, B., Zaman, I. Analysis of the Effect of Injection Pressure on Ignition Delay and Combustion Process of Biodiesel from Palm Oil, Algae and Waste Cooking Oil. Journal of Physics: Conference Series. 2017; 914(1): 012008. https://doi.org/10.1088/1742-6596/914/1/012008.
  • 8. Caresana, F., Bietresato, M., Renzi, M. Injection and Combustion Analysis of Pure Rapeseed Oil Methyl Ester (RME) in a Pump-Line-Nozzle Fuel Injection System. Energies. 2021; 14: 7535. https://doi.org/10.3390/en14227535.
  • 9. Kousoulidou, M., Fontaras, G., Ntziachristos, L., Samaras, Z. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel. 2010; 89: 3442–3449. http://dx.doi.org/10.1016/j.fuel.2010.06.034.
  • 10. Fontaras, G., Kousoulidou, M., Karavalakis, G., Tzamkiozis, T., Pistikopoulos, P., Ntziachristos, L., Bakeas, E., Stournas, S., Samaras, Z. Effects of low concentration biodiesel blend application on modern passenger cars. Part 1: Feedstock impact on regulated pollutants, fuel consumption and particle emissions. Environmental Pollution. 2010; 158(5): 1451–1460. https://doi.org/10.1016/j.envpol.2009.12.033.
  • 11. Cardenas, M.D., Armas, O., Mata, C., Soto, F. Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel. 2016; 185: 743–762. http://dx.doi.org/10.1016/j.fuel.2016.08.002.
  • 12. Senatore, A., Cardone, M., Buono, D., Rocco, V. Combustion study of a common rail diesel engine optimized to be fueled with biodiesel. Energy Fuels. 2008; 22(8): 1405–1410. https://doi.org/10.1021/ef7004749.
  • 13. How, H.G., Masjuki, H.H., Kalam, M.A., Teoh, Y.H. An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine. Energy. 2014; 69: 749–759. http://dx.doi.org/10.1016/j.energy.2014.03.070.
  • 14. Serrano, L., Lopes, M., Pires, N., Ribeiro, I., Cascao, P., Tarelho, L., Monteiro, A., Nielsen, O., Gameiroda Silva, M., Borrego, C. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy. 2015; 146: 230–238. https://doi.org/10.1016/j.apenergy.2015.01.063.
  • 15. Jiaqiang, E., Pham, M., Deng, Y., Nguyen, T., Duy, V.N., Le, D.H., Zuo, W., Peng, Q., Zhang, Z. Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends. Energy. 2018; 149: 979–989. https://doi.org/10.1016/j.energy.2018.02.053.
  • 16. Certyficate of Quality Nr 21BMK/A/321. Polski Koncern Naftowy ORLEN S.A. Płock, 06.02.2021.
  • 17. Certyficate of Quality no 21TBIO/A/41 Methyl ester of higher fatty acids RME. PKN ORLEN Południe S.A. Polska 04.02.2021.
  • 18. Certyficate of Quality no 21TBIO/A/274 Methyl ester of higher fatty acids FAME. PKN ORLEN Południe S.A. Polska 25.08.2020.
  • 19. PN-EN 16709+A1:2018-12 Paliwa do pojazdów samochodowych o wysokiej zawartości FAME (B20 i B30) – Wymagania i metody badań.
  • 20. Allen, C., Toulson, E., Tepe, D., Schock, H., Miller, D., Lee, T. Characterization of the effect of fatty ester composition on the ignition behavior of biodiesel fuel sprays. Fuel. 2013; 111: 659–669. https://doi.org/10.1016/j.fuel.2013.03.057.
  • 21. Longwic, R., Sen, A.K., Lotko, W., Górski, K., Litak, G. Cycle to-Cycle Variatons of the Combustion Process in the Diesel Engine Power by Different Fuels. Journal of Vibroengineering. 2011; 13(1): 120–127.
  • 22. Lotko, W. Self-Ignition Delay and Control Parameters of Diesel Engines for Different Vehicle Feeding Systems and Different Fuels. Advances in Science and Technology Research Journal. 2021; 15(1): 245–254. https://doi.org/10.12913/22998624/132474.
  • 23. Geng, L., Bi, L., Li, Q., Chen, H., Xie, Y. Experimental study on spray characteristics, combustion stability, and emission performance of a CRDI diesel engine operated with biodiesel–ethanol blends. Energy Reports. 2021; 7: 904–915. https://doi.org/10.1016/j.egyr.2021.01.043.
  • 24. Harrington, K.J. Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass. 1986; 9(1): 1–17. https://doi.org/10.1016/0144-4565(86)90008-9.
  • 25. Lotko, W. The Impact of Rapeseed Oil Methyl Esters on Fuel Injection Parameters in a Diesel Engine Equipped with the Common Rail Injection System. Advances in Science and Technology Research Journal. 2021; 15(3): 76–87. https://doi.org/10.12913/22998624/138725.
  • 26. Agarwal, A.K., Dhar, A., Gupta, J.G., Kim, W.I., Choi, K., Lee, C.S., Park, S. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management. 2015; 91: 302–314. https://doi.org/10.1016/j.enconman.2014.12.004.
  • 27. Nguyen, T., Pham, M., Anh, T.L. Spray, combustion, performance and emission characteristics of a common rail diesel engine fueled by fishoil biodiesel blends. Fuel. 2020; 269. https://doi.org/10.1016/j.fuel.2020.117108.
  • 28. Ramirez-Verduscol, P. Predicting cetane numer, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel. 2012; 91: 102–111. https://doi.org/10.1016/j.fuel.2011.06.070.
  • 29. Sudarmanta, B., Mahanggi, A.A.K., Yuvenda, D., Soebagyo, H. Optimization of injection pressure and injection timing on fuel sprays, engine performances and emissions on a developed DI 20c biodiesel engine prototype. International Journal of Heat and Technology. 2020; 38(4): 827–838. https://doi.org/10.18280/ijht.380408.
  • 30. Raghu, P., Sakthivel, B., Linkesh Kumar, V.V., Pradeep Raj, J., Niranjan Suresh, S. An optimization of spray and performance emission characteristic of biodiesel and its blends by varying injection timing in diesel engine. International Journal of Mechanical and Production Engineering Research and Development. 2019; 9(3): 165–170.
  • 31. Ashkezari, A.Z., Divsalar, K., Malmir, R., Abbspour, I. Emission and performance analysis of DI diesel engines fueled by biodiesel blends via CFD simulation of spray combustion and different spray breakup models: a numerical study. Journal of Thermal Analysis and Calorimetry. 2020; 139(4): 2527–2539. https://doi.org/10.1007/s10973-019-08922-1.
  • 32. El-Kelawy, M., Bastawissi, H.A.E., El-Shenawy, E.S.A., Panchal, H., Sadashivuni, K., Ponnamma, D., Al-Hofy, M., Thakar, N., Walvekar, R. Experimental investigations on spray flames and emissions analysis of diesel and diesel/biodiesel blends for combustion in oxy-fuel burner. Asia Pacific Journal of Chemical Engineering. 2019; 14(6): e2375. https://doi.org/10.1002/apj.2375.
  • 33. Shen, C., Zhang, S., Hou, J., Chang, W., Lee, C. The effects of spray angles on soot emissions of diesel and biodiesel engines. ICLASS 2015 – 13th International Conference on Liquid Atomization and Spray Systems 2015. Tainan, Taiwan.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a37fdbcd-1792-49de-b295-aca6949ba6cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.