PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the onset of condensation in the IMP PAN nozzle for cases without the appearance of shock waves in the steam flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper focuses on the prediction of the spontaneous condensation phenomena in the wet steam flow depending on the inlet temperature. The basic tests including comparison with experimental data have been performed using the planar symmetrical nozzle with the de Laval geometry (IMP PAN nozzle). It was assumed in calculations that steam is pure and does not contain heterogeneous sources of condensation. Numerical analysis was performed for boundary conditions which correspond to the flow regime without the shock wave. The present work includes simulations results of the onset of condensation and shows whether initiation of phase transition is located in the region between a spinodal and a binodal. Numerical results along the nozzle axis are presented on thermodynamic diagrams for all considered flow conditions.
Rocznik
Tom
Strony
107--123
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Energy Conversion Department, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Energy Conversion Department, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • Energy Conversion Department, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Yang Y., Shen S.: Numerical simulation on non-equilibrium spontaneous condensation in supersonic steam flow. Int. Commun. Heat Mass Transfer 36(2009), 902–907.
  • [2] Gerber A.G., Kermani M.J.: A pressure based Eulerian–Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int. J. Heat Mass Transfer 47(2004), 2217–2231.
  • [3] Nag P.K.: Power plant engineering. Tata McGraw-Hill, New Delhi 2008.
  • [4] Kornet S., Badur J.: Partial evaporation and total cut-off wet steam region on the shock wave. In Proc.: 3rd Polish Cong. of Mechanics and 21st Int. Conf. on Computer Methods in Mechanics, Short Papers vol. 2, Polish Society of Theoretical and Applied Mechanics, 2015, 523–524.
  • [5] Bilicki Z., Badur J.: A thermodynamically consistent relaxation model for a turbulent, binary mixture undergoing phase transition. J. Non-Equilibrium Thermodyn. 28(2003), 2, 145–172.
  • [6] Kornet S., Badur J.: Enhancement evaporation of the condensate droplets within the asymmetrical shock wave zone. Trans. Inst. Fluid-Flow Mach. 128(2015), 119–130.
  • [7] Dykas S., Majkut M., Smołka K., Strozin M.: Research on steam condensing flows in nozzles with shock wave. J. Power Technolog. 93(2013), 5, 288–294.
  • [8] Puzyrewski R.: Theoritical and experimental studies on formation and growth of water drops in LP steam turbines. Trans. Inst. Fluid-Flow Mach. 42-44(1969), 289–303.
  • [9] Chang Hyun Kim C. H., et al.: Numerical analysis of non-equilibrium steam condensing flows in various Laval nozzles and cascades. Eng. Appl. Comput. Fluid Mech. 11(2017), 1, 172–183.
  • [10] Guha A.: Analysis and computation of non-equilibrium two-phase flows. Sâdhanâ 22(1997), 3, 295–321.
  • [11] Sanju Hosur H., Anjaneyulu, Muralidharan K.V.: Numerical study on homogenous condensation of steam in converging diverging nozzle. Int. J. Res. Eng. Technol. 5(2016), 9, 44–47.
  • [12] Wegener P. P., Mack L.M.: Condensation in supersonic and hypersonic wind tunnels. Adv. Appl. Mech. 5(1958), 307–447.
  • [13] Gyarmathy G.: Grundlagen einer Theorie der Nassdampfturbine. Institut fur Termische Turbomaschinen, Zurich 1962.
  • [14] Puzyrewski R., Król T.: Numerical analysis of Hertz-Knudsen model of condensation upon small droplets in water vapor. Trans. Inst. Fluid Flow Machinery 70-72(1976), 285–308.
  • [15] Stodola A.: Undercooling of Steam Through Nozzle. Engineering (1915), 643–646.
  • [16] Wróblewski W., Dykas S., Gardzilewicz A., Kolovratnik M.: Numerical and experimental investigation of steam condensation in LP part of large power turbine. J. Fluids Eng.-T ASME, 131(2009), 4, 1–11.
  • [17] Kornet S., Badur J.: Comparison of two models of condensation. PhD Int. J. 1(2014), 193–203.
  • [18] Rajadurai J. S.: Thermodynamics and Thermal Engineering. New Age Int. (P), New Delhi 2003.
  • [19] Kornet S., Badur J.: An asymmetrical λ-foot of condensing steam flow in the IMP PAN nozzle. J. Phys.: Conf. Ser. 530(2014), 012018, 1–8.
  • [20] Kornet S., Badur J.: “Eulerian – Eulerian” versus „Eulerian –Lagrangean” models of condensation. Logistyka 4(2014), 4463–4473.
  • [21] Puzyrewski R., Gardzielwicz A., Bagińska M.: Shock wave in condensing steam flow through a Laval nozzle. Arch. Mech. 25(1973), 3, 393–409.
  • [22] Chandler K., Melas M., Jorge T.: A study of spontaneous condensation in an LP test turbine. ASME Turbo Expo 2015: Turbine Tech. Conf. Exposition, Montreal 2015.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a37f5793-5f64-4945-8f65-d255578bbf8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.